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Abstract
More than half of the 7,000 languages in the world are in im-
minent danger of going extinct. Traditional methods of doc-
umenting language proceed by collecting audio data followed
by manual annotation by trained linguists at different levels of
granularity. This time consuming and painstaking process could
benefit from machine learning. Many endangered languages
do not have any orthographic form but usually have speakers
that are bi-lingual and trained in a high resource language. It
is relatively easy to obtain textual translations corresponding to
speech. In this work, we provide a multimodal machine learn-
ing framework for speech representation learning by exploiting
the correlations between the two modalities namely speech and
its corresponding text translation. Here, we construct a con-
volutional neural network audio encoder capable of extracting
linguistic representations from speech. The audio encoder is
trained to perform a speech-translation retrieval task in a con-
trastive learning framework. By evaluating the learned repre-
sentations on a phone recognition task, we demonstrate that lin-
guistic representations emerge in the audio encoder’s internal
representations as a by-product of learning to perform the re-
trieval task.
Index Terms: Self-Supervised Speech Representation Learn-
ing, Contrastive Speech Translation Network

1. Introduction
UNESCOs “Atlas Of The Worlds Languages In Danger marks
43% of the languages in the world as endangered. It has been
argued that at the current rate of extinction, more than 90% of
the world’s languages will disappear in the next hundred years.
Loss of a language leads to loss of cultural identity, the loss of
linguistic diversity and in general, loss of knowledge. There are
many reasons for a language to become endangered as men-
tioned in [1]. The steps taken for documenting endangered
languages is quite painstaking. It includes codifying the rules
governing the language by trained linguists at different levels
such as phonetics, phonology, morphology, syntax and so on.
In order to facilitate language documentation the data collected
by field linguists consists of speech data, its orthographic tran-
scription, if available, and spoken/written translation in a high
resource language. For many languages no orthographic form
exists. Nevertheless, it is relatively easy to provide written or
spoken translations for audio sources, as speakers of a minority
language are often bilingual and literate in a high-resource lan-
guage [2]. Hence, oftentimes the only textual information that
is available for endangered languages is in the form of trans-
lations. This paired speech-translation data source can be ex-
ploited by machine learning algorithms to build systems of lin-
guistic structure discovery for speech in endangered language,
as shown by the excellent work presented in [1]. In this work,

we present the Contrastive Speech Translation Network (CST-
Net), a deep learning based multi-modal framework, that learns
low-level linguistic representations for speech by exploiting the
paired speech-translation data source.

Our CSTNet is inspired by the multimodal Deep Audio-
Visual Embedding Network (DAVENet) and subsequent Res-
DAVENet of Harwath et al. [3, 4], along with their more re-
cent research on sub-word unit learning within the DAVENet
and ResDAVENet models [5, 6]. They propose neural models
of Audio-Visual grounding, where they construct neural net-
work models that learn by associating spoken audio captions
with their corresponding image. Their framework consists of an
audio encoder and an image encoder, both parametrized using
Deep Neural Networks. Association between the spoken audio
captions and their corresponding image are learned by using a
constrastive learning framework which is a triplet loss between
the embeddings outputted by the audio and the image encoders.
They show that by performing the speech-image retrieval task,
linguistic representations emerge in the internal representation
of the audio encoder. In this work, we reach similar conclusion
by performing the task of speech-translation retrieval using the
aforementioned contrastive learning framework. We give de-
tails about our model in Section 4.

As a proof of concept, we train the CSTNet on speech-
translation pairs where the speech side is always English and
the text translation side is either French, German, Spanish, Por-
tugese or Italian. We obtain this paired dataset from the Mul-
tilingual Speech Translation Corpus (MuST-C) (Section 3). In
this work, we make the following contributions:

• We present a self-supervised learning [7] framework for
linguistic representation learning from speech, without
any manual labels, that learns by performing the task of
speech-translation retrieval. This framework has the po-
tential to be used in documenting endangered language
where such speech-translation paired data exists. Be-
sides language documentation, this is also a novel self-
supervised learning framework for speech representation
learning.

• We analyze the representations learned by the CSTNet’s
audio encoder on minimal-pair ABX task [8] proposed
as part of the Zero Resource Speech Challenge [9]. We
show that our model outperforms the best system, based
on Wavenet-VQ [10], by 8 percentage points (pp) and is
comparable to the recently proposed ResDAVENet [6].
In addition, we show that the representations learned by
the CSTNet encodes phonetic information as evidenced
by the good performance on the downstream phone clas-
sification task on the Wall Street Journal dataset.
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2. Related work
Unsupervised learning methods can be categorized into self-
supervised learning methods and generative models. Recently,
several self-supervised learning methods have been proposed
that learn from only speech data only. Methods like Prob-
lem Agnostic Speech Encoder (PASE) [11], MockingJay [12],
Wav2Vec [13] and Autoregressive Predictive coding (APC) [14]
fall into this category. Wav2Vec is a Convolutional Neural Net-
work (CNN) based contrastive predictive learning framework.
A CNN audio encoder provides low-frequency representations
from raw waveforms and the model learns by maximizing mu-
tual information between the past and future feature represen-
tations output by the encoder. PASE is multi-task framework
that uses a SincNet [15] encoder to embed a raw waveform
into a continuous representation. The encoder is trained by
performing multiple prediction and mutual information maxi-
mization tasks conditioned on the audio embedding output by
the SincNet encoder. APC and MockingJay borrow the self-
supervised learning methods proposed in the field of Natural
Language Processing (NLP). APC constructs a spectrogram
language model using a Recurrent Neural Network (RNN). The
model is trained on the future frame prediction task, condi-
tioned on the past information, by minimizing the L1 loss be-
tween the predicted and the ground truth acoustic frame. Mock-
ingJay performs the task of masked self-prediction of the raw
Mel-spetrogram. They use a Transformer encoder inspired by
the BERT [16] architecture in NLP. So far, the self-supervised
learning approaches we discussed use only speech data. An-
other important class of self-supervised methods are the Deep
Audio-Visual Embedding Networks (DAVENet) [3, 5, 6]. They
train a CNN audio encoder that learns to associate spoken cap-
tions with its corresponding image. They show that by train-
ing the network to perform the speech image retrieval task, the
internal representations of audio network learn linguistic repre-
sentations as a by-product. As far as we know, our work is the
first one in which the two modalities are speech data and it’s
textual translation in different languages.

Generative models have seen renewed interest over the
past years due to the introduction of Variational Autoencoders
(VAEs) [17]. VAEs have been used for disentangled representa-
tion of speech [18, 19, 20]. Besides VAE, Autoregressive mod-
els, a class of explicit density generative models, have been used
to construct speech density estimators. Neural Autoregressive
Density Estimatior (NADE) [21] is a prominent earlier work
followed by more recent WaveNet [22], SampleRNN [23] and
MelNet [24]. An interesting avenue of future research is to
probe the internal representations of these models for linguis-
tic information. We note that WaveGlow, a flow based gen-
erative model, has been recently proposed as an alternative to
autoregressive models for speech [25]. Generative adversarial
networks (GANs), an implicit density generative model, have
also been used to model speech [26]. Autoregressive genera-
tive models and WaveGlow are generally used as Vocoders for
speech synthesis in Text-to-Speech synthesis systems. It is not
clear how to use these systems for representation learning.

3. Dataset
We use the freely downloadable MuST-C [27] corpus, a multi-
lingual speech translation corpus, to train our model. For each
of the 8 languages targeted by MUST-C, the corpus contains
at least 385 hours of audio recordings from English TED talks,
which are automatically aligned at the sentence level with their

manual transcriptions and translations. Statistics of the corpus
that we used (5 languages out of 8) are given Table 1 extracted
from [27].

Table 1: Statistics of the MUST-C corpus

Tgt #Talk #Sent Hours
De 2093 234k 408
Es 2564 270k 504
Fr 2510 280k 492
It 2374 258k 465
Pt 2050 211k 385

The corpus was also divided into development, test and
train sets. The test and development corpus is built with seg-
ments from talks that are common to all the languages. Their
size is, respectively, 1.4K (from 11 talks) and 2.5K segments
(from 27 talks). The remaining data (of variable size depending
on the language pairs) are used for training.

4. Contrastive Speech Translation Network
4.1. Neural model

As illustrated in Figure 1, our model consists of two embedding
functions that embed audio and text sequences into a fixed di-
mensional vector. The embedding functions are parametrized as
an 11-layered convolutional neural network (CNN) with resid-
ual connections, followed by 2 fully-connected layers and a
mean pooling layer at the end that gives a fixed dimensional
embedding. The first layer of the network is a 1-D convolu-
tion that spans the entire spatial dimension of the input signal,
while the remaining 10 1-D convolution layers are across the
time axis. The 10 layers are divided into 2 residual blocks of 4
layers each, interleaved with two strided convolution layers with
stride of 2. We also use Batch-Normalization [28] to normalize
the activations after each hidden layer in the network. Finally,
the output of the convolution layers is mean pooled across the
time axis, to give a single embedding vector that represents the
input feature sequence. Both the audio and the text embedding
functions use the same CNN architecture. We use 1024 hidden
channels for each layer and hence the size of the output embed-
ding vector is 1024. The CNN architecture is inspired by the
audio encoder presented in Chorowski et al. [10].

The input to the audio network is 40 dimensional Mel-
FBanks extracted with a Hamming window of size 25 ms and
stride 10 ms. The input to the text network is the sequence of
word embeddings that make up the sentence. To extract word
embeddings we use the pre-trained Word2Vec models for dif-
ferent languages publicly available through the FastText library.
This gives 100 dimensional word embeddings. There is clearly
opportunity to consider word embeddings extracted from pre-
trained Language Models such as BERT [16], GPT-2 [29] etc.
We leave this line of investigation for future work.

4.2. Triplet loss training

Our model was trained using the same loss function as [5, 6].
This loss function is a mix of two triplet loss terms [30, 31],
one based on random sampling of negative examples, and the
other based on semi-hard negative mining, in order to find more
challenging negative samples. Below we give in some detail
about how the triplet loss is computed. This formulation is taken
from Harwath et. al [6].
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Figure 1: Diagram of the Contrastive Speech Translation Network.

Given two sets of output embeddings, A = {a1, ..., aB}
and T = {t1, ..., tB}, in a batch size of B audio/translation
training pairs, the randomly-sampled triplet loss term is com-
puted by randomly selecting impostor examples, āj and t̄j for
the jth element in the batch and then computing the randomly-
sampled triplet loss as follows:

Ls =

B∑
j=1

(max(0, tTj āj−tTj aj+1)+max(0, t̄Tj aj−tTj aj+1))

(1)
For the semi-hard negative triplet loss, we first define the

sets of impostors candidates for the jth example as Âj = {a ∈
A|tTj a < tTj aj} and T̂j = {t ∈ T|tT aj < tTj aj}. The semi-
hard negative loss is then computed as:

Lh =

B∑
j=1

(max(0, max
â∈Âj

(tTj â)− tTj aj + 1)+

max(0,max
t̂∈T̂j

(t̂T aj)− iTj + 1))

Finally, the overall loss function is computed by combining
the two above losses, L = Ls +Lh, which was found by [5] to
outperform either loss on its own.

The model is trained using the Adam optimizer with a learn-
ing rate of 0.001 for 100 epochs. We decay the learning rate by
multiplying it with a factor of 0.95 every three epochs. L2 regu-
larization on model parameters with weight 5e-7 is used during
training.

5. Experiments and results
5.1. Evaluation Protocol and Dataset

We evaluate the internal representations learned by the CST-
Net’s audio encoder on two tasks: the Minimal-Pair ABX (MP-
ABX) task [32, 33] and phone recognition. MP-ABX pro-
vides an unsupervised and non-parametric way of evaluating
speech representations. It measures ABX-discriminability be-
tween phoneme triples that differ only in their center phoneme
(for example for phonemes ‘bed’ and ‘bad’). For phoneme
triples a and x from the same category (A) and b from another
category (B), the ABX-discriminability in the ZeroSpeech chal-
lenge is defined as the probability that the Dynamic Time Warp-
ing (DTW) divergence between a and x is smaller than that be-
tween b and x. ABX performance is tested on the ZeroSpeech

Challenge 2019 (ZRC19) English test set. For phone recog-
nition, we pass the features through a softmax layer that is
trained using Connectionist Temporal Classification (CTC) to
predict the output phone sequence. By following this protocol
for phone recognition, we ensure that the task performance is
solely driven by the learned representations. For phone recog-
nition, the softmax classifier is trained on 80 hours of the Wall
Street Journal (WSJ) train dataset and evaluated on the WSJ
eval92 dataset. We do not fine tune the pre-trained audio net-
work on downstream tasks. We also present speech translation
retrieval performance of CSTNet. This shows how well the
model is performing on the actual task that it is trained on.

Features for the downstream tasks are extracted from dif-
ferent layers of the pre-trained CSTNet which is trained on dif-
ferent speech-translation pairs of the MuST-C corpus.

5.2. Results and Discussion

In Table 2, we present the speech translation retrieval using the
recall accuracy from text to speech and speech to text. This
gives us an indication of how well CSTNet is doing at the actual
task that it is trained on. Rows correspond to retrieval perfor-
mance for the model trained on different language pairs of the
MuST-C corpus.

Table 2: Experimental results for speech to text and text to
speech retrieval task.

Speech→ Text Text→ Speech

Language pair R@10 R@5 R@1 R@10 R@5 R@1

en-fr 75.4 67.9 43.5 72.5 67.1 29.0
en-de 73.9 64.4 38.8 66.9 61.6 26.6
en-es 79.9 73.3 49.6 77.2 73.3 37.2
en-it 72.7 62.9 38.7 67.8 61.7 27.8
en-pt 69.4 59.8 36.3 64.6 58.2 25.4

In Table 3, we present the best ABX scores (lower is bet-
ter), on the ZRC19 English test set. We compute the ABX
score using all the layers of the pre-trained CSTNet’s audio
encoder trained on different language pairs. Here, we present
the best results that is usually obtained using the representa-
tions in the middle of the network (for layer numbers 5, 6).
In Figure 2, we show the curve of ABX scores vs audio net-
work layer number for the CSTNet trained on three different
language pairs. The network hits a sweet spot in the middle
layers, where the receptive field is approximately 100-140 ms.



A similar trend is observed for all the languages. We signifi-
cantly outperform Wavenet-VQ (ZS), the best performing sub-
mission to the ZRC19 challenge, based on Vector Quantization
VAE (VQ-VAE) [10], that is trained on the ZeroSpeech (ZS)
training set. To have a fair comparison, we also compare our
model against Wavenet-VQ (MuST-C) that is trained on the
English speech from the MuST-C corpus on which CSTNet is
also trained. CSTNet still outperforms Wavenet-VQ. Hence, we
show that our framework could be an alternative to reconstruc-
tion based representation learning methods. As compared to the
best reported ResDAVENet model in [6], the audio visual sys-
tem, our best model, trained on English-Spanish language pair,
lags behind by 1.5 points.

Table 3: ABX Scores on ZRC19 Challenge English Test Set

Method ABX
ResDAVENet 10.8
en-es 12.3
en-fr 13.0
en-it 14.6
en-de 15.1
en-pt 16.7
Wavenet-VQ (ZS) 19.9
Wavenet-VQ (MuST-C) 20.1

AB
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Figure 2: ABX error vs Audio Network’s layer number

In Table 4, we analyze the representations learned by dif-
ferent layers of the CSTNet’s audio encoder. Rows in the table
correspond to the CSTNet trained on different language pairs
and the different columns correspond to the layer number of the
pre-trained audio network. As can be seen from the table, as we
go higher up in the audio network, the phone recognition per-
formance improves with the best performance achieved using
the representations extracted from the last layer. The improve-
ment in PER is not consistent with the increase in layer size
but the best performance is always from last layer. This is not
surprising as the last layer has the highest receptive field and
hence has access to more global information essential for the
task of phone recognition. The best performance is obtained
using the CSTNet trained on the language pair English-French,
but the performance gap between different language pairs is not
very significant, with a gap of 2.8 percentage points between
the best (en-fr) and the worst (en-de) language pairs.

In Table 5, we compare the CSTNet with other self-
supervised learning systems on the task of phone recognition.
Representations learned by CSTNet significantly outperform all
other systems except Wav2Vec, where the best CSTNet system
trained on English-French lags by 8 percentage points (pp). Our

Table 4: Phone Recognition Results with features extracted from
different layers of CSTNet on WSJ eval92. LX stands for Layer
#X.

PER
Language pair L5 L6 L7 L8 L9 L10 L11 L12 L13
en-fr 40.9 34.5 33.5 32.1 31.9 32.5 32.5 32.5 29.2
en-de 52.8 38.6 40.9 41.4 41.1 43.4 41.1 38.3 32.5
en-es 42.7 34.8 33.5 33.4 33.2 33.7 34.9 35.4 30.3
en-it 82.8 25.5 34.4 34.6 33.7 35.7 36.0 35.8 30.9
en-pt 83.3 38.3 37.9 38.1 39.3 38.7 42.1 40.0 31.7

worst model, English-German, outperforms ResDAVENet by
6pp. For ResDAVENet, we compute the PER using features
from every layer and report the best results. This is an encour-
aging result showing that CSTNet can learn better linguistic in-
formation than the ResDAVENet trained on the audio-visual re-
trieval task. We do not train any of the comparison features ex-
tractors on our own, but use the publicly available checkpoints
released by the authors of the respective methods.

Table 5: Phoneme Error Rate using multiple self-supervised
learning methods.

Method PER
Wav2Vec [13] 21.6
en-fr 29.2
en-es 30.3
en-it 30.9
en-pt 31.7
en-de 32.5
ResDAVENet [6] 38.5
MockingJay [34] 41.2
PASE [11] 45.2

We acknowledge that in this work we have not shown the
usefulness of our framework as part of any real world linguistic
annotation toolkit used for documenting endangered language,
nonetheless, we argue that by empirically demonstrating the ca-
pability of CSTNet to acquire linguistic information in its inter-
nal representations, it could form an integral part of the linguis-
tic structure discovery systems. It could be composed with the
non-parametric Bayesian model of Acoustic Unit Discovery of
Lee & Glass [35], Variational AUD system of Ondel et. al [36]
and Ebbers et. al [37] where the CSTNet audio encoder will
play the role of feature extractor.

6. Conclusions and Future Work
In this paper, we propose the Contrastive Speech Translation
Network (CSTNet), a self-supervised learning framework for
learning linguistic representations from speech using the speech
translation retrieval task. To the best our knowledge, this is the
first work that uses paired speech-translation data for speech
representation learning. We show that the speech representa-
tions learned by our framework outperformed multiple repre-
sentation learning systems on the downstream task of phone
recognition. In the future, we would apply our proof of concept
to a real world language documentation task. Another interest-
ing future direction is to learn not just phonetic information but
also sub-word and word like information using this framework.
To that end, we would follow the work on learning discrete hi-
erarchical units presented in ResDAVENet-VQ [6], where the
authors use interleaved Vector Quantization layers in the audio
network of their audio-visual retrieval system.
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