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Almost 100 years ago, it was hypothesized that individual 
memory reconstructs past experiences on the basis of social 
frameworks bound to collective memory1. According to this 

view, collective memory supplies a long-term organizational model 
(or schema) of historical and social knowledge, symbols, narratives 
and images, into which individual memory must fit2. Collective rep-
resentations of the past are selected according to schematic narra-
tive templates, often emphasizing some elements and minimizing 
others, that define the group’s identity3. These collective representa-
tions are stored both within individuals connected by a common 
historical past as shared memories, and outside individuals through 
sociocultural means such as the media4–6.

Until now, research in cognitive neuroscience and psychology 
has adopted a bottom-up approach to highlight the individual cog-
nitive mechanisms that underpin the formation of shared knowl-
edge about collective events7,8. The top-down approach (that is, how 
cultures, mediated by several different resources, shape and influ-
ence individuals’ cognitive structures6,9) has received less attention. 
The notion of memory schemas, put forward by Bartlett2 and later 
developed by neuroscientists (see Gilboa and Malartte10 for a recent 
review), together with the concept of social knowledge11,12, pro-
vides a conceptual and neurobiological framework to account for 
the influence of pre-existing collective knowledge on the retrieval 
of declarative memory. Here, we tested the hypothesis that memory 
representations in the medial prefrontal cortex (mPFC), whose role 
in representing memory schemas and social knowledge has been 
clearly established10–12, are also organized by collective schemas 
acquired in the course of a lifetime.

This hypothesis was based on two distinct lines of research 
that associate the functioning of the ventral (vmPFC) and dor-
sal (dmPFC) portions of the mPFC with schema processing and 

social knowledge, respectively. The first line of research involves 
brain imaging studies on the vmPFC, which have shown that this 
structure supports the formation of elaborate neural networks 
that organize abstract information and concepts into schemas10. 
Schemas in the vmPFC also support the integration of multiple epi-
sode elements and modulate the recall of recent episodic memo-
ries13, the simulation of future events14 and decision-making about 
novel experiences15. This integrative function of schemas in the 
vmPFC, promoting associations between contexts, locations and 
events, is also critical for synthesizing the emerging affective value 
of the experienced episode14–16. Thus, given that collective schemas 
require a high level of integration and abstraction to integrate the 
regularities and recurrent features of collective events, the adapta-
tion of individual memories to a common collective scaffolding 
may rely on the vmPFC.

The second line of research focuses on the dmPFC, and stud-
ies have shown that the functions of this region support the ability 
to mentalize others’ thoughts or social situations17–19. The dmPFC 
is recruited during the processing of situations depicting social 
interactions20, is involved during narrative comprehension11 and 
differentiates mental inferences about the group from those about 
its individual members21. This structure has been demonstrated to 
encode a shared neural structure of narratives across memory pat-
terns of distinct individuals who have a shared experience of the 
same event22. Given its role in representing other people’s view-
points, social situations and story-based narratives, the dmPFC 
may thus represent persistent social and collective frameworks and 
provide collective schemas or narratives on which memory can be 
reconstructed.

We used functional magnetic resonance imaging (fMRI) to test 
whether participants used collective schemas when remembering 
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pictures seen during a tour of the Caen Memorial Museum (here-
after, the Memorial) in Normandy, France. Memorials play a role 
in both creating a framework of meaning supporting collective 
memory and identity, and reactivating a pre-existing collectively 
shared narrative of history. The purpose of the Memorial tour was 
therefore not only to activate in our participants a set of knowledge 
that is consistent with narrative templates that support collective 
schemas, but also to reshape their understanding and knowledge 
towards a collective and shared agreement. A total of 24 healthy par-
ticipants were led on a tour around the Memorial, where they were 
exposed to a total of 119 pictures in 22 different zones (Fig. 1a). 
Each zone was associated with a particular aspect of World War II, 
and zone order during the tour (six possible routes) was counterbal-
anced across participants. The next day, we recorded brain activity 
using fMRI while participants recalled pictures from either short 
captions describing the pictures they had seen the day before (target 
sentences) or novel captions (distractor sentences) (Fig. 1b). During 
this task, participants were asked if they could visualize the picture 

cued by the short description. Distractor sentences described real 
events and existing pictures, very similar to those exhibited at the 
Memorial. Compared with a recognition task of the pictures that 
may rely on perceptual familiarity, this procedure ensured that par-
ticipants actively engaged in recalling the exhibited pictures and 
their associated contents, including the collective body of knowl-
edge, which should, like any other schema, provide a long-term 
organizational framework facilitating the reconstructive processes 
engaged during memory recall. Our goal was to demonstrate such 
top-down influence of collective schemas during recall by assess-
ing the similarity between the memory representations in the mPFC 
and their collective expressions.

Commemorative events, films, education and numerous memo-
rial sites stress the role of particular historical events and promote 
their retention in collective memory. These various forms of memo-
ries are constantly being produced through the media, which play 
a central role in expressing and shaping the collective memory of a 
nation, connecting people through a common narrative across time 
and space5. To capture the organization of collective schemas in 
the media, we analysed a corpus including all 3,766 news bulletins 
and reports on World War II broadcast on French national televi-
sion from 1980 to 2010 (Fig. 2a). This corpus was collected at the 
National Audiovisual Institute, a repository of all French radio and 
television archives. For decades, this institute has conserved audio-
visual material, with a particular focus on television programmes 
(mandatory deposit since 1992). Our aim was to analyse this  
corpus to extract the gist or schema of the semantic relationships 
between words and to generalize this schema to the Memorial 
pictures using their captions. Previous approaches to computing 
the semantic relationships between words include latent semantic 
analysis (LSA), network analysis, word embedding vectors (that is, 
Word2vec), and topic modelling based on a latent Dirichlet alloca-
tion (LDA). Among these approaches, LSA23,24, network analysis25 
and topic modelling26–28 have been applied successfully to provide 
plausible models of the human semantic memory structure that 
account well for various memory processes and performances. 
Here, we choose to focus on topic modelling based on LDA29,30 in 
which word meanings are represented in terms of a set of proba-
bilistic topics (that is, category or lexical field) that can be used  
to infer the gist (that is, a distribution over topics) of new docu-
ments. In this context, the advantage of LDA is its reliance on a 
generative model26 derived from words in the collective mem-
ory corpus that can be inverted and generalized to the Memorial  
pictures (using their captions) to describe their topic distribution 
and their semantic distances.

After speech-to-text conversion and lexical processing, we counted 
occurrences of 6,240 canonical forms of a set of words (that is, lem-
mas) across all 3,766 documents to form a Word × Document fre-
quency matrix. We then applied a topic model based on an LDA29,30 
algorithm to this matrix. LDA uses machine learning to discover latent 
factors by learning the topics that occur in a collection of documents. 
In short, the probabilistic topic model estimated by LDA consists of 
two matrices. The first matrix describes the probability of drawing a 
particular word when sampling a particular topic. The second matrix 
describes the probability of finding a particular topic when sampling 
a particular document (here, television news bulletins and reports). 
These two matrices, once combined, constitute a model that can gen-
erate word frequencies across documents. This generative model is 
initiated by randomly choosing a topic mixture for a given document 
(according to a Dirichlet distribution over a fixed set of K topics). This 
topic mixture spits out words with certain probabilities, and the whole 
process is refined with Gibbs sampling to establish a set of topics that 
are likely to have generated the whole corpus. Finally, we fitted this 
topic model to the Memorial pictures, using their captions (also lem-
matized) to estimate their topic probabilities (see Fig. 2a). The dis-
tance between the distributions of topic probabilities for each pair of 
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Fig. 1 | Experimental design for recall of individual memories. a, On Day 1,  
participants toured part of the Caen Memorial Museum. They saw a 
total of 119 pictures (with captions underneath) in 22 thematic zones 
(zone numbers in circles). b, The next day, we recorded the participants’ 
brain activity using fMRI while they recalled pictures from short captions 
comprising either target or distractor sentences.
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Fig. 2 | Measuring collective, shared and contextual memory. a, Thirty years of television news bulletins and reports were turned into text, lexically 
processed and analysed using topic modelling. The topic model was then fitted to the Memorial pictures, using their captions to estimate their topic 
probabilities. The distances between the pictures, based on the distribution of topic probabilities, therefore reflected the semantic properties of the 
collective memory structure, and could be encoded in an RDM. The whole process of learning and fitting the topic model was repeated by varying 
the number of topics allowed from 2 to 100, in increments of 1. For each topic, topic estimation was also reiterated ten times to account for the small 
variability in parameter estimation generated by the topic models. b, To demonstrate the universality of the collective memory RDM and independently 
select the optimum number of topics, we extracted the structure of shared representations across 54 individuals who were unfamiliar with the Memorial, 
using a task in which they had to arrange images based on their historical proximity. The resulting shared RDM corresponded to the compromise33 of 
all 54 individual RDMs derived from the Euclidean distances of the image arrangement. The relationship between individual RDMs is illustrated by a 
multidimensional scaling (MDS) plot. c, We computed the similarity of the collective memory RDM, averaging in incremental bins of five topics, to 
our control model of shared memory (see b), as well as to additional control models encoding the semantic distances of the pictures intended by the 
Memorial’s planners and historians (that is, the Memorial and Historical RDMs, based on the Memorial’s zone indices and the historical proximity of 
the pictures derived from their captions, respectively). The collective memory RDM estimated from the topic model was best predicted by the structure 
of the shared memory RDM measured across control individuals (right). This similarity between collective and shared memory (error bar reflects 95% 
confidence interval, computed by bootstrapping the 54-individual set) peaked when six to ten topics were included during topic discovery (grey shaded 
bar). Subsequent analyses of brain and behavioural data involving comparisons with the collective RDM were restricted to this range of topics, which best 
reflected the content of shared memory across individuals at the expense of historical accuracy.

Collective memory schemasa

Shared memory schemasb

Corpus of national TV news Speech-to-text conversion

“de Gaulle exhorted the 
French population to resist 

the occupation and to 
continue the fight ....”

Text mining

D
oc

 N
 ..

...
...

 D
oc

 1

French ... Resist ... De Gaulle ... Population

3,
76

6 
do

cu
m

en
ts

6,240 word lemmas

Document × word co-occurence matrix

No. of words

N
o.

 o
f t

op
ic

s

P
(w

or
d∣

to
pi

c)

Latent Dirichlet allocation
Topic model training

Fitting topic model to memorial images
French ... Resist ... De Gaulle ... Population

449 word lemmas

Image × word co-occurence matrix

......

...

...

No. of images

N
o.

 o
f t

op
ic

s

P
(to

pi
c

∣im
ag

e)

Shared
RDM

Memorial 
RDM

Historical 
RDM

Validation of collective model and topic selectionc

Image arrangement task

Latent Dirichlet allocation

Individual RDM MDS of individual RDM

Processing pipeline

2010

1990
2000

1980

3,766 World War II news bulletins
and reports

?

0

0.60

N topics

6–
10

16
–2

0

26
–3

0

36
–4

0

46
–5

0

56
–6

0

66
–7

0

76
–8

0

86
–9

0

96
–1

00

Shared RDM

Historical RDM

Memorial RDM

S
pe

ar
m

an
’s

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

N images

N
 im

ag
es

N images

N
 im

ag
es

N images

N
 im

ag
es

Img no. of 001

Img no. of 010

Img no. of 060

Img no. of 119

Collective RDM

Shared RDM

Collective
RDM

NATurE HuMAN BEHAViour | VOL 4 | FEbRUARy 2020 | 189–200 | www.nature.com/nathumbehav 191

http://www.nature.com/nathumbehav


Articles Nature HumaN BeHaviour

pictures was then encoded in a representational dissimilarity matrix 
(RDM). This collective RDM reflected the semantic structure of col-
lective memory for Memorial pictures, where the meaning of a given 
picture was defined by its relative distance from all the other pictures. 
Given that topic modelling introduces a degree of randomness during 
parameter estimation, we reiterated the whole process ten times. Each 
measure of similarity reported below was averaged across these ten 
repetitions.

results
Validation of collective memory measurements. We first ran 
a series of extra comparisons to validate the model of collective 
memory computed from the national corpus of news broadcasts. 
Our goal was to demonstrate the universality and validity of the 
model of collective memory by showing that it reflects a shared and 
selective representation of the past, whose core structure is differ-
ent from a historical perspective that aspires to provide an accurate 
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Fig. 3 | Model dependencies and results of the rSA. a, MDS of the RDMs describing the relationships between pictures in terms of their collective 
(national news bulletins and reports on World War II), semantic (that is, Wikipedia World War II articles), spatial (that is, Memorial layout) and temporal 
(that is, acquisition order) properties. Collective and semantic RDMs included six to ten selected topics (Fig. 2c) and their ten iterations. Temporal 
RDMs included the six possible routes around the Memorial. b, The dmPFC and vmPFC regions of interest (ROIs). c, Similarities between the upper 
triangular portions of image arrangements (left), dmPFC (middle) and vmPFC (right) RDMs, and collective, semantic and contextual model RDMs. 
bar graphs display the mean beta coefficients from the regression model (top) and Spearman’s correlation coefficients (bottom) across participants 
(N = 24). Horizontal lines indicate significant differences at P < 0.05, false discovery rate (FDR)-corrected for multiple comparisons. Error bars reflect 
95% bootstrapped CIs (and thus indicate significance when they do not overlap with zero). Dashed horizontal lines indicate the noise ceiling (that is, an 
estimate of the reliability of the neural data; see Methods), which reflects the expected performance of the (unknown) true model given the noise and 
variability among study participants34. Regarding brain imaging data, the collective RDM reaches the noise ceiling, indicating that collective schemas 
account for a significant amount of the true neural dissimilarity structure. Note that in the context of the current experiment, the small correlation between 
individuals’ brain dissimilarity structures and the expected true model arises from the fact that we have only one measurement of each pattern of memory 
activity (that is, participants recall the picture only once), making the estimate of the neural dissimilarity noisy.
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account of the past. Collective memories are often viewed as shared 
individual memories or representations resulting from the social 
means and transmission tools created by the community31. These 
social means serve not only to reshape and harmonize individual 
representations by guiding the remembering of all the members of 
the community, but also to regulate the construction of a collective 
identity by selecting and emphasizing certain elements of the past at 
the expense of others3–6. This fact highlights two fundamental prop-
erties of collective memory: (1) collective memory is located both 
in the social tools used to connect individuals (for example, national 
news broadcasts) and in individual minds (as a shared form of rep-
resentation), and (2) the selection and sharing of events for inclu-
sion in the collective memory are determined by their social value 
and importance to society, leading to a schematization that may 
contrast with the meaning of historical memory.

We sought to assess how well the collective structure we obtained 
matched this definition. To this end, we measured the shared pool 
of knowledge across 54 control individuals unfamiliar with the 
Memorial, and tested whether this shared representation was a 
better characterization of the structure of collective memory than 
a model describing the relatedness of the images from a historical 
perspective. To capture the shared structure of individual repre-
sentations, we designed an image arrangement task32 (Fig. 2b) to 
capture each individual semantic organization of the Memorial pic-
tures within a common space. During this task, we asked partici-
pants to place the images displayed in the Memorial inside circles 
partitioning the map space, according to their historical proximity 
(Fig. 2b). These spatial arrangements of historical pictures reflected 
the semantic organization of each individual, and were encoded in 
RDMs using the Euclidean distances between the images. We com-
puted the compromise33 of these 54 individual RDMs to measure a 
common representation reflecting a shared schema (that is, a shared 
RDM; Fig. 2c). To capture the historical distance between the pic-
tures, we used the image captions, written by museum curators with 
in-depth historical knowledge of the war, and the relatedness of 
the events (Historical RDM), as well as the Memorial’s own orga-
nization, whereby the images were grouped in 22 thematic zones 
(Memorial RDM). The Historical RDM was derived from a stan-
dard vector-space model where each image is represented by a vec-
tor of terms including all lemma words occurring in the Memorial 
captions (but with no knowledge of topic assignment). For each pic-
ture, the weights of this vector of terms corresponded to the term 
frequency (derived from the collective memory corpus) or to zero, 
depending on the occurrence or absence of the word in the caption 
describing the picture, respectively. The cosine distances between 
all possible pairs of pictures’ term vectors were used to compute the 
Historical RDM, while the Memorial RDM was derived from the 
rank order of the images in the Memorial’s main route (Fig. 2c). 
These two RDMs therefore reflected the semantic proximity of the 
pictures as intended by the museum’s historians and planners.

The collective RDM extracted from the news corpus was very 
similar to the structure of the shared RDM measured across control 
individuals (Fig. 2c, right). This similarity between collective and 
shared memory peaked when six to ten topics were included during 
topic discovery. Furthermore, the collective RDM was best predicted 
by the shared RDM, which outperformed both the Historical and 
Memorial RDMs. In line with the definition of collective memory, 
these findings therefore suggest that the computed meaning of the 
images reflected a shared agreement, and the schematic structure 
of the knowledge shared by control participants unfamiliar with the 
Memorial was different from the historical proximity of the images 
defined by the experts. As a result, all subsequent analyses were 
based on a collective memory RDM computed using six to ten topics.

Representational similarity analysis. Control models. Our aim 
was to estimate the similarity between the organization of the 

collective RDM and the organization of individual memory, using 
representational similarity analysis (RSA34). However, the similarity 
between the patterns of memory activity could be confounded by 
the expression of episodic memory reflecting the context of acquisi-
tion, including temporal and spatial information about the encoded 
events. This context of acquisition could overlap and share simi-
larities with the structure and organization of collective memory. 
To differentiate these effects of contextual proximity from the col-
lective schema and to clarify the role of episodic memory for con-
textual elements, we also tested contextual RDMs describing the 
organization of pictures in the Memorial (Fig. 3a). These contextual 
RDMs were derived from the relative spatial distance of the pictures 
in the Memorial (that is, spatial RDM) and the order in which they 
were seen during the tour (that is, temporal RDM).

The relationships between the pictures captured by our model 
of collective memory could also correspond to pre-existing seman-
tic similarities reflecting a form of shared (although not collective) 
memory for common concepts and the meaning of language. To 
control for these commonly shared semantic relationships, we used 
2,643 French Wikipedia articles related to World War II as a bench-
mark model for the specific semantic relationships between words 
related to World War II, and trained a topic model that we then fitted 
to the Memorial pictures. LDA models of Wikipedia articles about 
various concepts have been shown to produce an accurate represen-
tation of semantic features that effectively predict patterns of brain 
activity27,28. As a global repository of memory, which is not simply 
stored but is the product of the collaborative recall of many people 
and has a communicative function, Wikipedia shares several features 
with the concept of collective memory35. There are, however, several 
critical differences36. Collective memory is a selective representation 
of the past, shaped by schematic narrative templates that contribute 
to the construction of group identity, often emphasizing some ele-
ments while minimizing others3. Given its encyclopaedic nature, it 
is debatable whether Wikipedia fosters this selective representation 
of the past and the formation and compilation of corresponding 
memories that have a bearing on group identity. Wikipedia can-
not be understood as a consistent medium, in contrast to television 
news bulletins and reports, which consistently promote symbolic 
and memorable elements of collective memory without negotia-
tion. For instance, the meaning of the French word ‘collaboration’ 
varies between the television news corpus and Wikipedia. In the 
former, this concept unambiguously refers to the participation of 
the French government and its politicians and public servants (for 
example, Bousquet, Leguay, Touvier and Papon) in the deportation 
and killing of Jews, and the arrest of French Resistance fighters by 
German Nazis. In World War II-related Wikipedia articles, how-
ever, the word ‘collaboration’ is associated with different semantic 
contexts that are not necessarily related to French collaboration. By 
contrast, the semantic domain containing shared meanings in the 
lexical and conceptual fields related to war is similar across corpuses 
(for example, ‘ship’ and ‘navy’ are related in both corpuses). To con-
trol for these shared domain-specific relationships between World 
War II-related words and concepts, we therefore created semantic 
RDMs (Fig. 3a) using the 2,643 French Wikipedia articles related to 
World War II, and applied the same method developed to create the 
collective RDM.

Behavioural results. To delineate the role of collective memory 
through the expression of individual memory at the behavioural 
level, fMRI participants performed the image arrangement task 
that was used as a proxy for individual schemas (that is, individual 
RDMs computed using the Euclidean distances between all possible 
pairs of pictures in this two-dimensional behavioural arrangement). 
We first sought to assess whether the Memorial tour increased the 
consistency between individual and collective memory by compar-
ing the similarity of the arrangements of the fMRI and control (that 
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is, unfamiliar with the Memorial) participants with the collective 
RDM, using Spearman’s correlation. One-tailed two-sample t-tests 
confirmed this prediction and revealed the presence of a greater 
similarity (t(76) = 1.70; P = 0.047, 90% confidence interval (CI) 
(0.0007, 0.088), Cohen’s d = 0.41) to collective schemas for partici-
pants that had explored the Memorial (mean = 0.24; s.d. = 0.095) 
compared with the control group (mean = 0.196; s.d. = 0.12). These 
results suggest that experiencing a visit at the Memorial reshapes 
and harmonizes individual knowledge towards a shared configura-
tion, solidifying collective schemas. However, this difference could 
also be driven by the fact that control participants were less familiar 
with the pictures when they had to arrange them, perhaps impact-
ing subtle arrangements they could make within the set of pictures.

We next sought to assess which model (collective, semantic or 
contextual) best explained the expression of individual memory at 
the behavioural level. The upper triangular portions of these model 
RDMs were entered in a regression model as predictors of the upper  
triangular portions of the individual RDMs (see Chikazoe et al.37 
and Bracci et al.38 for a similar approach). Both regressors and data 
were initially rank-transformed to test for nonlinear monotonic 
relationships. Given that collective, semantic (that is, Wikipedia) 
and contextual (that is, spatial and temporal) model RDMs were 
not orthogonal and overlapped to some extent (see Fig. 3a), we 
used regression models to identify the unique variance attribut-
able to each of the model predictors. We report the results of these 
regression models as well as the results of standard Spearman’s 
correlation coefficients calculated in isolation, for the sake of com-
pleteness, in Fig. 3c and Supplementary Table 1. Group-level infer-
ence on RDM model relatedness and differences were estimated 
using non-parametric random-effects statistics by bootstrapping 
the participant set (see Methods for details). At the behavioural 
level, individual RDMs were significantly related to the collective 
RDM (bootstrapped PFDR < 0.0001, bootstrapped 95% CI (0.1373, 
0.2109), Cohen’s d = 1.82), an effect that was critically stronger 
than the similarity with semantic (bootstrapped PFDR < 0.0001, 
95% CI (0.0321, 0.1066), Cohen’s d = 0.73), spatial (bootstrapped 
PFDR < 0.001, bootstrapped 95% CI (0.0421, 0.1562), Cohen’s 
d = 0.67) and temporal (bootstrapped PFDR = 0.002, bootstrapped 
95% CI (0.0277, 0.1348), Cohen’s d = 0.60) RDMs (Fig. 3c, left). 
These findings suggest that knowledge is organized around collec-
tive schemas in individual brains.

Brain imaging results. To further test this hypothesis, we extracted 
the pattern of activity across voxels of the dmPFC and vmPFC (see 
Fig. 3b) for each recalled memory of the pictures, and we character-
ized the RDM by computing the correlation distances (1 − Pearson 
correlation coefficient across voxels) between all possible pairs of 
memory patterns. Confirming our main hypothesis that the mPFC 
codes collective schemas, both dmPFC (bootstrapped PFDR < 0.0001, 
bootstrapped 95% CI (0.0042, 0.0108), Cohen’s d = 0.89) and 
vmPFC (bootstrapped PFDR < 0.0001, bootstrapped 95% CI (0.0019, 
0.0083), Cohen’s d = 0.67) RDMs were significantly related to the 
collective RDM (Fig. 3c, middle and right, respectively). Patterns of 
activity in the dmPFC were moderately related to semantic (boot-
strapped PFDR = 0.0514, bootstrapped 95% CI (−0.0003, 0.0067), 
Cohen’s d = 0.39) and spatial (bootstrapped PFDR = 0.0927, boot-
strapped 95% CI (−0.0008, 0.0058), Cohen’s d = 0.28) RDMs, but 
not to temporal RDMs (bootstrapped PFDR = 0.4430, bootstrapped 
95% CI (−0.0035, 0.0043), Cohen’s d = 0.03). The similarity of the 
dmPFC representational content to the collective RDM was stron-
ger than the similarity to the semantic (bootstrapped PFDR = 0.046, 
bootstrapped 95% CI (0.0001, 0.0081), Cohen’s d = 0.40), spatial 
(bootstrapped PFDR = 0.026, bootstrapped 95% CI (0.0010, 0.0094), 
Cohen’s d = 0.46) and temporal (bootstrapped PFDR = 0.026, boot-
strapped 95% CI (0.0013, 0.0128), Cohen’s d = 0.49) RDMs. This 
result indicates that the representation of the collective schema in 

the dmPFC during memory recall could not be accounted for by 
the reactivation of either semantic information or recent contextual 
memories. A searchlight analysis across the whole brain confirmed 
the involvement of the mPFC in representing the collective schema, 
although the collective schema was also found to influence activ-
ity in the dorsolateral PFC, an effect previously linked to schema 
incongruency39 (Extended Data Fig. 1). Patterns of activity in the 
vmPFC were also moderately related to semantic (bootstrapped 
PFDR = 0.0576, bootstrapped 95% CI (−0.0003, 0.0046), Cohen’s 
d = 0.34) and spatial (bootstrapped PFDR = 0.0576, bootstrapped 
95% CI (−0.0005, 0.0074), Cohen’s d = 0.36) RDMs (although these 
two models were significant when isolated correlations were con-
sidered; Fig. 3c, bottom, and Supplementary Table 1). There was no 
statistically significant evidence that the temporal RDMs explained 
patterns of activity in the vmPFC (bootstrapped PFDR = 0.2964, 
bootstrapped 95% CI (−0.0027, 0.0054), Cohen’s d = 0.11) (Fig. 3c,  
right). However, no statistically significant differences were obser-
ved between the collective RDM and the semantic, spatial and  
temporal RDMs in the vmPFC (PFDR > 0.197; see Supplementary 
Table 1). These findings therefore suggest that the vmPFC recalled 
elements whose representations coincided with the collective mean-
ing, World War II semantic concepts and the spatial layout of the 
Memorial images.

Memory patterns in the dmPFC and vmPFC showed a consis-
tent relationship with collective memory. For the dmPFC patterns, 
comparisons with the control semantic model based on Wikipedia 
World War II articles suggested that this effect was not confounded 
by pre-existing semantic memory for common concepts and the 
meaning of language, and comparisons with models accounting for 
contextual elements of the Memorial tour suggested that it was not 
confounded by episodic memory for contextual details. Such dis-
tinctions were not, however, observed in the vmPFC. These find-
ings thus suggest that the dmPFC encodes a common mental model 
reflecting the structure of collective memory computed from the 
topic modelling of the national corpus of news broadcasts. We per-
formed an additional analysis to confirm that this relationship was 
not related to a trivial effect of word historical proximity and that 
topic models based on LDA better explain the underlying neural 
representations of the picture memory traces. This analysis entailed 
a comparison of the collective RDM with the standard vector space 
model encoding the historical proximity of the words (that is, the 
Historical RDM; Fig. 2c) but with no knowledge of collective topic 
assignment. The similarity of the representational content to the 
collective RDM was stronger than the similarity to the Historical 
RDM for both the dmPFC (bootstrapped P = 0.033, bootstrapped 
95% CI (0.001, 0.015), Cohen’s d = 0.43) and the vmPFC (boot-
strapped P = 0.028, bootstrapped 95% CI (0.001, 0.014), Cohen’s 
d = 0.44). This result confirmed that our initial observation does not 
reflect a trivial effect of word proximity in the captions.

Collective schemas are integrated in the course of a lifetime. 
In theory, we would expect exposure to the relevant World War II 
media to increase the alignment of individual schemas with the col-
lective schema, which would then be apparent in the pattern of neu-
ral activity. As such, we might expect to see individual age-related 
differences, such that more exposure to the relevant World War II 
media would increase alignment with the collective schema. Older 
individuals should have more exposure to the relevant World War 
II media and presumably exhibit a closer alignment with the col-
lective schema. In line with this idea, we found a robust correla-
tion40 between age and neural similarity with the collective schema 
in the dmPFC (coefficient of correlation (r) = 0.3559, P = 0.044, 
bootstrapped 95% CI (0.0053, 0.6535); no bivariate outlier detected) 
but not in the vmPFC (r = 0.0805, P = 0.35, bootstrapped 95% CI 
(−0.2944, 0.4942); one bivariate outlier detected). However, no such 
statistically significant correlation was observed for the Wikipedia 
RDM in either the dmPFC (r = 0.1117, P = 0.30, bootstrapped 
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95% CI (−0.3325, 0.4933); no bivariate outlier detected) or the 
vmPFC (r = 0.2237, P = 0.14, bootstrapped 95% CI (−0.3029, 
0.6186); no bivariate outlier detected). These findings further sup-
port the idea that collective schemas are represented by the dmPFC 
and are constantly enriched by experiences, through repeated expo-
sure and extraction of commonalities.

We then transformed the individual (derived from the image-
arrangement task) and collective RDMs into a binary matrix to 
further disentangle the contributions of collective and individual 
schemas to the pattern of neural activity observed during memory 
recall (Fig. 4, top right). This transformation allowed us to distin-
guish between the common and unique contributions of collective 
and individual schemas to the pattern of neural dissimilarity. For 
each arrangement in the image arrangement task, we extracted a 
binary adjacency matrix by considering the images that were placed 
in the same circles (see Methods and Fig. 2b). These circles could 
be viewed as proxies for individual semantic categories, and binary 
matrices were created accordingly (1 indicating pictures connected 
by the same category and 0 indicating disconnected pictures). We 
then applied the same rationale to the distribution of topic prob-
ability, to obtain a collective adjacency binary matrix, but this time 
considering that two pictures belonged to the same category if they 
shared the same maximum topic assignment. We then broke these 
individual and collective adjacency binary matrices down into 
three distinct matrices reflecting connections between pictures that 
were (1) unique to the individual schema (individual connections), 
(2) unique to the collective schema (collective connections) and (3) 
common to the individual and collective schemas (common connec-
tions; see Fig. 4, bottom left). We then transformed these matrices 
into distance matrices and computed the similarities with the brain 
RDMs (Fig. 4, bottom right). Although on average, similar num-
bers of connections were specific to the individual schema or com-
mon to the individual and collective schemas, neural similarities 
in the dmPFC (bootstrapped PFDR < 0.0001, bootstrapped 95% CI 
(0.0064, 0.0171), Cohen’s d = 0.83) and vmPFC (bootstrapped 
PFDR = 0.0012, bootstrapped 95% CI (0.0024, 0.0099), Cohen’s 
d = 0.63) were preferentially related to common connections. 
Although individual (bootstrapped PFDR = 0.0016, bootstrapped 
95% CI (0.0023, 0.0118), Cohen’s d = 0.58) and collective (boot-
strapped PFDR = 0.0016, bootstrapped 95% CI = (0.0023, 0.0118), 
Cohen’s d = 0.59) connections were both significantly represented 
in the dmPFC, the dmPFC’s representational contents were more 
similar to the common connections than to either purely individual 
(bootstrapped PFDR = 0.021, bootstrapped 95% CI (0.0006, 0.0083), 
Cohen’s d = 0.46) or purely collective (bootstrapped PFDR = 0.0096, 
bootstrapped 95% CI (0.0024, 0.0130), Cohen’s d = 0.55) con-
nections. These distinctions between common connections on 
the one hand, and individual (bootstrapped PFDR = 0.002, boot-
strapped 95% CI (0.0017, 0.0071), Cohen’s d = 0.62) and collective 
(bootstrapped PFDR = 0.037, bootstrapped 95% CI (0.0003, 0.0075), 
Cohen’s d = 0.42) connections on the other, were also found in the 
vmPFC, which also significantly represented collective connec-
tions (PFDR = 0.0303, 95% CI (0.0001, 0.0041), Cohen’s d = 0.40). 
We found no statistically significant evidence that the vmPFC 
represented individual connections (bootstrapped PFDR = 0.1585, 
bootstrapped 95% CI (−0.0015, 0.0049), Cohen’s d = 0.20). These 
findings therefore suggest that remembering is driven by our indi-
vidual understanding of representations that reflect our experi-
ence of social and collective constructs. Individuals’ remembering 
and understanding of the past is linked to their consciousness and 
knowledge of collective and social group memory.

Discussion
Previous brain imaging studies have focused entirely on experimen-
tally induced schemas isolated from any collective context. These 
studies have critically stressed the role of the mPFC in retrieving39 

or deriving41 schematic knowledge from recent episodes. Here,  
we found that patterns of activity in the dmPFC contained infor-
mation about the collective meaning of recalled pictures, even after 
controlling for the influence of other potential confound variables, 
such as memory for contextual episodic elements (that is, spatial 
and temporal location) and domain-specific language meanings 
derived from a collaborative encyclopaedia (that is, Wikipedia). 
These differences were statistically significant whether the simi-
larities between neural representations and competing models 
were tested in isolation or in a multiple regression model, suggest-
ing that elements unique to collective memory are represented in 
the dmPFC. Collective remembering3 through social tools shapes 
memory7,8, and groups can also distort individual memories42. 
This memory convergence across individuals emerges out of social 
interactions in a bottom-up fashion and bolsters group cohesion 
and identity. Our data demonstrate that, in addition to these social 
interactions, collectively meaningful information in the media, and 
therefore stored both outside and inside individuals, constitutes a 
common pre-existing scaffolding for building individual memories 
in the dmPFC.

The dmPFC plays a central role in the neural network of  
narrative comprehension and gist extraction11,22. Narratives are 
key to the elaboration and formation of collective representations, 
and share some similarities with the concept of memory schema10. 
The dmPFC is also often associated with the ability to infer other 
people’s mental states11,21, or theory of mind. Our findings for  
the dmPFC may therefore reflect the ability of this region to  
comprehend a collective viewpoint or meaning that is relevant to  
a given society, facilitating the sharing of a common experience  
with others43. Moreover, the ability to model other people’s view-
points is elicited even when it is currently irrelevant to the task  
goal44. This is reminiscent of our experimental setting, which 
required individuals to recall their previous personal experience 
without appealing to a collective viewpoint. Our data therefore 
suggest not only that representations in the dmPFC may contain 
information about the collective perspective or meaning of memory 
content, but also that this reinstatement may occur spontaneously 
and automatically during memory recall. Our analyses further  
suggest that individuals align their cognitive knowledge map with 
the structure of collective memory, and preferentially reactivate 
these shared representations during memory recall, instead of the 
specific elements of their individual knowledge. This collective 
memory that exists outside and lives beyond individuals, yet some-
how connects them, could constitute a common model supporting 
interpersonal communication45, thus underscoring the social func-
tion of memory1,46.

The vmPFC indistinguishably reflected information about col-
lective, semantic and spatial memory when correlations between 
neural representations and models were tested in isolation, sug-
gesting the existence of a common mapping between these various 
levels of representations during memory reactivation in this region. 
This result is in line with recent findings highlighting the primary 
role of the vmPFC in integrating abstract knowledge in a spatially 
coherent way using grid cells47, and suggesting an integrative func-
tion of schemas in the vmPFC to promote associations between 
contexts, locations and events13–15. Our findings therefore suggest 
that we remember in the vmPFC by transporting ourselves into a 
persistent conceptual and spatial framework.

Although our findings suggest that the reinstatement of a shared 
collective schema in the dmPFC during memory recall did not 
depend on episodic details of the encoded event, it is worth point-
ing out that this reactivation occurred after just one night of consoli-
dation following the Memorial tour. The Memorial setting may 
therefore have favoured the rapid formation of a collective schema  
(as suggested by the greater similarity between individual and collec-
tive RDMs following the Memorial tour compared with control  
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participants unfamiliar with the Memorial). Indeed, memorials prob-
ably contribute to the establishment of collective schemas in indi-
viduals as much as they reflect pre-existing ones. Accordingly, the 
current data do not allow us to say whether the structure of collective 
knowledge was present in participants’ brains before the Memorial 
tour. Further studies will be required to assess whether collective 
knowledge also helps interpret the flow of ongoing information 
during memory encoding, and whether its expression is necessarily 
embedded in the expression and retrieval of episodic memory traces.

Humans maintain group consistency and identity across space 
and time (generations) using collective memory, which is trans-
mitted by specific cultural tools and means. The current findings 
do not allow us to state whether the collective schemas identified 
here are representative of this fundamental cultural specificity 
and property of collective memory. Even so, our findings high-
light the role of the media in promoting the formation of a body 
of knowledge in the mPFC consistent across individuals, fostering 
the formation of new related memories in a shape and expression 
that are harmonized and shared across individuals. Wikipedia, 
however, despite its collaborative nature, does not seem to fos-
ter a collective representation of the past that harmonizes neural 
representations at individual levels and promotes the compila-
tion of corresponding memories. Although this difference might 
suggest that Wikipedia cannot be understood as a consistent 
medium (in contrast to television news bulletins and reports, 
which consistently promote symbolic and memorable elements of 
collective memory without negotiation), functional properties of 
Wikipedia may also explain our findings. For instance, it has been 

recently shown that a small number of Wikipedia editors have a 
disproportionately large influence on the formation of collabora-
tive knowledge48. The citation system of Wikipedia articles also 
reduces the content overlap between articles, resulting in weaker 
and less stable semantic relationships between undisclosed but 
still related terms in hyperlinks.

The ability or inability to integrate and fit one’s personal history 
or memory into a collective framework imposed by one’s cultural 
environment may play a fundamental role in human well-being and 
deserves to receive greater attention in future studies. These future 
challenges for the neuroscience of memory can be met only by 
adopting a transdisciplinary perspective that promotes interactions 
between psychological, social and mathematical models of large-
scale data to construct an integrative account of human memory49. 
The present study shows how one such model of memory systems 
could be constructed, drawing on the interactions between the neu-
robiological and collective levels.

Methods
MRI participants. Twenty-four right-handed native French speakers between 22 
and 39 years old (mean = 28.6 years; s.d. = 4.4) were paid to participate (11 males, 13 
females). They had no reported history of neurological, medical, visual or memory 
disorders. The study was approved by the regional research ethics committee (Comité 
de Protection des Personnes Nord-Ouest III, sponsor ID: C13-46, RCB ID: 2014-
A00126-41, clinicaltrial.gov registration number: NCT02172677). Two additional 
participants were also initially recruited for design setting and adjustment (but not 
analysed). One participant was replaced without further analyses due to important 
MRI artefacts preventing image analysis. All participants gave written consent before 
participating. Participants were asked not to consume psychostimulants, drugs or 
alcohol before or during the experimental period. No statistical methods were used 
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Fig. 4 | Disentangling the contributions of individual and collective schemas. The top left panels show the individual (that is, Participant 8’s performance 
on the image arrangement task) and collective (Topic 8 and Iteration 1 in this example) binarized matrices. Colours indicate that the two pictures 
belonged to the same category, according to individual (red) and collective (blue) schemas. The bottom left panels display connections (in red) specific to 
Participant 8 that were not found in the collective schema, common connections (in green) between the individual and collective levels, and connections 
(in blue) specific to the collective schema and not found in Participant 8. The top right panel shows the relative proportions of individual, collective and 
common connections, averaged across participants. The bottom right panels show the similarity between the upper triangular portions of the brain RDMs 
and the individual, collective and common connections models (N = 24). Horizontal lines indicate significant differences at P < 0.05, FDR-corrected for 
multiple comparisons. Error bars reflect 95% bootstrapped CIs (and thus indicate significance when they do not overlap with zero).
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to predetermine the sample size, but the sample size used in this study (N = 24) is 
comparable with that of previous fMRI studies using RSA.

Materials and Memorial exploration procedure. The stimuli were 119 pictures 
selected from the area World War, Total War at the Caen Memorial Museum. Each 
display was photographed at the Memorial using a professional digital camera and 
professional lighting. These pictures were then adjusted for contrast and lighting, 
and the external contour was cropped, using image processing software.

Each participant explored the Memorial at the end of the afternoon, just before 
the Memorial door closes. This ensured that other visitors would not disrupt the 
participants’ tours. Participants were first given general instructions about the 
experiment and were each equipped with a mobile eye-tracking system (Applied 
Science Laboratory) consisting of glasses and a small storage device connected to 
the glasses and carried as a backpack. These glasses were mounted with a small 
camera filming the participant’s visual exploration, which was recorded and 
broadcast on the experimenter’s laptop. Although we do not present these eye-
tracking data, which go beyond the scope of the current paper, we could thus track 
participants’ exploration without following them, and thus ensure that they were 
complying with the following instructions.

Participants were told to explore a restricted space of the Memorial and were 
given a map describing the spatial layout (see Fig. 1a). This space comprised a 
total of 119 pictures, each with a caption underneath, and was organized according 
to 22 thematic zones (zone numbers are indicated in the circles in Fig. 1a). Two 
other zones were included at the very beginning and at the very end of the tour 
for recency and primacy effects. These filler zones were always the same, and their 
pictures were not included in the subsequent experimental protocol (and were 
only used for training and familiarization with the subsequent recall task). These 
22 zones were grouped according to 6 main sectors (illustrated with the 6 main 
colours on the Memorial map in Fig. 1a). The exploration order of these main 
sectors was counterbalanced across participants. The exploration order of the 
zones within each sector was also randomized according to 6 different exploration 
lists (4 participants were assigned to each of these 6 lists). Each zone started 
with an introduction board describing the content of the zone that participants 
were instructed to read first before exploring the zone. Participants then had to 
explore each picture composing the zone. They did so by first reading the caption 
underneath, and then were free to explore the content of the picture as long as they 
wished before moving on to the next picture until they completed their tour, whose 
average duration was 76 min (s.d. = 13.8). Note that during this Memorial tour, 
participants were unaware that their memories would be tested the next day.

Recall task. The next day, participants performed the recall task, which was 
divided into three fMRI sessions, each about 10 min in length. Each session 
presented short sentences corresponding to short excerpts describing real World 
War II pictures that the participants had explored (that is, target sentences; average 
word count = 7.8, s.d. = 2.4) or had not explored (that is, distractor sentences; 
average word count = 7.7, s.d. = 2.1) the day before. In total, 119 target sentences 
and 63 distractor sentences were presented randomly to the participants. Historical 
events associated with the distractor sentences were selected to match the pictures 
displayed at the Memorial in terms of both content and relative proportion of 
pictures per zone. The country in which the event took place was also displayed 
underneath each sentence, as was the year. Participants were aware of the proximity 
between distractor and target sentences and were therefore strongly encouraged 
to rely on their ability to fully recollect and visualize the associated pictures to 
perform this task. After the onset of each cueing sentence, participants reported 
whether or not they could recall the associated picture by pressing yes with their 
right index finger or no with their right middle finger. The sentences appeared 
for 4.5 s centred on a grey background. The trials were presented in a stochastic 
fashion according to a Poisson distribution (λ = 4) with a 4.2 s average interstimulus 
interval (range = 1–10 s) with 25% additional null events and were separated by 
a fixation cross. Accuracies and performances on the recall task are described in 
Supplementary Table 2.

Image arrangement task. Outside the scanner, participants performed an image 
arrangement task, used as a proxy for individual schemas, on the 119 Memorial 
pictures. The images had to be positioned within 1 to 28 circles according to 
their historical proximity. This image arrangement task was written in Javascript 
embedded into HTML code for internet navigation, thus offering great flexibility 
in the task execution: participants could zoom in or out with a moving background 
similar to Google Maps, they could enlarge a picture by clicking on it (with the 
Memorial caption underneath), the Memorial captions appeared on mouseover, 
and participants could select and move multiple pictures at once. Pictures were 
initially placed in a large square above the circles. Participants were instructed to 
review each picture and to place them in the circles below as they went through 
each of them. They were told to group in the same circle any pictures they felt 
described close or similar historical events. If they felt the pictures described 
disconnected events, they were instructed to place them in different circles. 
Participants were free to use as many circles as they wanted, from a single circle 
to all circles available on the map. The instructions emphasized that there was 
absolutely no right number of circles to be used, and that they were free to proceed 

as they wished. Participants were also instructed to pay attention to the distances 
between circles and their relative positions. The more they judged that the pictures 
were linked to connected or disconnected events, the closer or further away their 
relative positions across circles should be. Finally, when the main arrangement was 
completed for all pictures, participants had to readjust the positions of the pictures 
within each circle. The Euclidean distances between the image positions then 
reflected the semantic organization of a given individual and could be encoded  
in an RDM.

MRI acquisition parameters. MRI data were acquired on a 3 T Achieva scanner 
(Philips) at the brain imaging Cyceron centre in Caen. All participants first 
underwent high-resolution T1-weighted anatomical volume imaging using a three-
dimensional (3D) fast field echo (FFE) sequence (3D-T1-FFE sagittal; TR = 20 ms, 
TE = 4.6 ms, flip angle = 10°, SENSE factor = 2, 180 slices, slice thickness = 1 mm, 
no gap, field of view = 256 × 256 × 180 mm3, matrix = 256 × 130 × 180). This 
acquisition was followed by the functional sessions, which were acquired using 
an ascending T2-star EPI sequence (MS-T2-star-FFE-EPI axial; TR = 2050 ms, 
TE = 30 ms, flip angle = 78°, 32 slices, slice thickness = 3 mm, 0.75 mm gap, 
matrix = 64 × 63 × 32, field of view = 192 × 192 × 119 mm3, 310 volumes per run).

MRI preprocessing. Data were analysed using Statistical Parametric Mapping 
software (SPM12, Wellcome Department of Imaging Neuroscience). During 
preprocessing, images were first spatially realigned to correct for motion and 
were then corrected for slice acquisition temporal delay. After coregistration 
with the T1 structural image, functional images were then normalized using the 
parameters derived from the nonlinear normalization of individual grey-matter 
T1 images to the T1 template of the Montreal Neurological Institute. Note, 
however, that unwarped and unsmoothed images were used for the RSA. Image 
normalization was nonetheless needed to compute the forward deformation field 
and its inversion, to normalize searchlight images or wrap back mPFC ROIs to 
native space (see below), respectively. The use of unsmoothed images is important 
for RSA as it preserves the fine-grained spatial pattern that characterizes the 
representational geometry of a region.

First-level analysis. The preprocessed time series, corresponding to native space 
images (that is, non-warped and unsmoothed images), were then high-pass filtered 
to 1/128 Hz in each voxel. Regressors in a general linear model (GLM) for each 
voxel were created by convolving a delta function (modelled as 4.5 s short-epoch) 
at the stimulus onset for each condition of interest with a canonical haemodynamic 
response function (HRF). A least-squares separate approach was used50,51, which 
consisted of estimating a separate GLM for each trial. In each GLM, the trial of 
interest was modelled as one regressor, and all the other trials were collapsed 
into five distinct regressors corresponding to recall, miss, false alarms, correction 
rejection and no response conditions (see Supplementary Table 2 for behavioural 
performances on the recall task). This approach has been promoted for designs 
with short interstimulus intervals, when there is a high level of collinearity between 
haemodynamic responses to successive trials51. Further regressors of no interest 
were the six realignment parameters to account for linear residual motion artefacts. 
Autocorrelation between the GLM residuals was corrected using the first-order 
autoregressive process, resulting in prewhitened data after restricted maximum 
likelihood estimation.

Regions of interest. The mPFC was defined anatomically using the Automated 
Anatomical Labeling atlas52 and was split into vmPFC and dmPFC ROIs. The 
dmPFC corresponded to the bilateral frontal superior medial gyrus of the 
Automated Anatomical Labeling atlas (indexes 2601 and 2602). The vmPFC mask 
included the bilateral fronto-orbital medial gyrus (indexes 2611 and 2612),  
the bilateral rectus (indexes 2701 and 2702) and the ventral portion (Z coordinates 
inferior or equal to zero) of the bilateral anterior cingulum (indexes 4001 and 
4002). These two ROIs are shown in Fig. 3b. These two mask images were 
then wrapped back to each participant’s native space using the inverse of the 
deformation field computed during the normalization process.

Representational similarity analysis. Contrast maps of individual memories 
were then computed for each recalled picture and used to compute RDMs in our 
ROIs. For each individual and each ROI, brain RDMs were computed as follows: 
for each voxel, the vector of activity across recalled pictures was mean-centred and 
scaled to its standard deviation (that is, z score); then, for each pair of pictures, 
the activity patterns in a given ROI were compared using spatial correlation, and 
the dissimilarity was then given by 1 minus the correlation. At the behavioural 
level, individual RDMs were derived from the Euclidean distances between all 
possible pairs of pictures arranged by the participants on the two-dimensional 
spatial layout. The upper triangular forms of these brain or behavioural RDMs 
were then extracted and compared with the upper triangular forms of RDM 
models describing collective schemas, semantic distances (derived from Wikipedia 
World War II articles; see below), contextual spatial distances (Euclidean distances 
of the pictures’ spatial positions) and temporal distances (Euclidean distances 
of the pictures’ temporal rank order during Memorial exploration). These 
comparisons between brain/behavioural and model RDMs were achieved using 
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a regression model. Both regressors and data were initially rank-transformed to 
test for nonlinear monotonic relationships. Given that collective, semantic (that 
is, Wikipedia) and contextual (that is, spatial and temporal) model RDMs are not 
orthogonal and overlap to some extent, a regression model helps clarify the unique 
variance attributable to each of the model predictors. For each participant, this 
regression model was reiterated for each topic of interest, and the ten repetitions 
of the topic model and model regression coefficient were averaged across these 
iterations. All regression models were full-rank, and the variance inflation factor 
was less than 1.5 for each regressor, confirming the identifiability and efficiency 
of our models. The results of these regression models are reported in main 
text, but we also report the results of standard Spearman’s correlations tested in 
isolation, for the sake of completeness, in Fig. 3c and in Supplementary Table 1 
for statistical tests. Only items correctly recalled were included in the analysis of 
activity patterns. Group-level inferences were conducted using non-parametric 
random-effects statistics to test for both RDM relatedness and differences by 
bootstrapping the subject set with 5,000 iterations28. For each model RDM or each 
pair of contrasted model RDMs, we did not have assumptions about the underlying 
distribution and performed non-parametric random-effects statistical tests using 
a bootstrapping approach. We performed a mean comparison at each bootstrap 
set and estimated the P value as the proportion of bootstrap samples further in the 
tails than zero. The expected proportions of type I errors across multiple tests of 
both RDM model relatedness and model comparison were controlled using the 
FDR correction, with a desired FDR q = 0.05 and assuming a positive dependency 
between conditions34[,53. For the test of RDM model relatedness, the expected FDR 
was computed using all the uncorrected one-tailed P values of tested models. 
For the test of RDM model comparison, we restricted the correction to our main 
hypothesis and only included comparisons involving the collective memory RDM 
(with respect to other reference models) to compute the expected FDR, using 
two-tailed P values. We report adjusted P values and use bootstrapping iterations 
to determine 95% percentile CIs. The noise ceiling reported in Fig. 3c reflects the 
between-participant correlation of the brain RDMs. This correlation was computed 
for each participant as the correlation between that participant’s brain RDM and 
the average brain RDM of the remaining participants34. The noise ceiling depicted 
in Fig. 3c corresponds to the average of these individual correlations.

Searchlight analysis. Meshes of the white matter and pial surfaces of the cortex 
were reconstructed from T1-weighted images collected for each participant using 
the Freesurfer software package version 554,55. We used the rsa_defineSearchlight 
MATLAB function from the RSA toolbox34 (https://github.com/rsagroup/
rsatoolbox), which also relies on Surfing toolbox functions56 (https://github.com/
nno/surfing), to define a surface-based searchlight for both hemispheres (using 
a 40-voxel searchlight with a radius of 10 mm). Voxels in the neighbourhood of 
one or more nodes of the surface were selected using a geodesic distance measure 
and by constructing virtual lines that connected corresponding nodes on the 
pial and white matter surfaces. This procedure produces a searchlight following 
the surface curvature, thus reducing spatial bias during the analysis of fMRI 
patterns. In contrast to neighbourhoods defined volumetrically, this resulted in 
neighbourhoods with a curved cylindrical shape that followed the contours of the 
sulci and gyri of each individual. Once the searchlight structure for every vertex 
was constructed and mapped to the functional image space, patterns of recalled 
activity at each voxel composing the searchlight were mean-centred and scaled to 
their standard deviations before computing the dissimilarity structure (1 minus the 
spatial correlation) across all pairwise comparisons of recalled patterns. The upper 
triangular forms of these searchlight RDMs were then extracted, rank-transformed, 
and compared using a regression model to the rank-transformed upper triangular 
form of all RDM models (collective, semantic and contextual). The result of this 
searchlight analysis created a beta map, a volume in which each voxel contains a 
statistic for the searchlight centred at that voxel. These first-level beta maps for 
each model were normalized to the Montreal Neurological Institute T1 template 
and smoothed using a 10 mm full-width at half-maximum Gaussian kernel. These 
standard-space participant beta maps were submitted to a second-level non-
parametric random-effects analysis in FSL version 5.0.1157. To correct for multiple 
comparisons, the group-level beta map was submitted to maximal permutation 
testing using threshold-free cluster enhancement58 (TFCE), which offers a good 
compromise between the overly sensitive cluster-based thresholding and the too 
conservative whole-brain voxel-based correction. To test RDM model relatedness 
and differences, TFCE maps were then corrected (Pcorrected < 0.05) for the family-
wise error rate using standard permutation tests implemented in FSL with the 
randomize function (10,000 permutations). The results of the searchlight analysis 
are reported in Extended Data Fig. 1.

Collective memory corpus description and analysis. The corpus was collected  
by the MATRICE project (http://www.matricememory.fr/?lang=en), a multi-
disciplinary and technological platform, whose aim is to provide tools and 
technological and theoretical background to understand the relationship between 
collective and individual memory. The audio-visual clips initially composing 
the corpus were stored at the National Audiovisual Institute, one of the main 
partners of the MATRICE project and a public institute whose goal is to archive 
all audio-visual productions broadcast on French television or radio. For this 

study, we included in our corpus all television news bulletins and reports (not 
including radio shows or documentaries) broadcast from 1980 to 2010 with 
World War II as the common theme, leading to a total of 3,766 documents. We 
focus on this particular time period for three reasons. First, 1980 to 2010 largely 
overlaps with the lifetimes of our participants. Second, this period corresponds 
to the establishment of a new narrative for the French collective memory (that is, 
a new “Régime of Mémorialité”59). This included the emergence and affirmation 
of the Shoah memory, as well as major trials acknowledging the participation of 
the French state and its people, and their representatives at the time (for example, 
Bousquet, Leguay, Touvier and Papon), in the deportation and killing of Jews. 
Third, thanks to advances in automatic speech recognition and the availability 
of electronic texts with which contemporaneous language models were built to 
process data recorded after 1980, the 3,766 audio files were converted to XML 
format using speech-to-text conversion algorithms developed by the Laboratoire 
d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI; 
Engineering Sciences and Computer Science Lab), one of the main partners of the 
MATRICE project.

Once converted to text, our corpus was initially manually processed to 
discard segments not related to World War II (exclusively keeping sections 
dedicated to this topic). During this operation, the automatic speech-to-text 
transcriptions were additionally corrected by a human reader. After this initial 
preprocessing, a separate XML file was extracted for each document. These 
files were then processed with textual data analysis methodologies using the 
TXM software60 (http://textometrie.ens-lyon.fr/) connected with the TreeTagger 
morphosyntactic analyser61 (http://www.cis.uni-muenchen.de/~schmid/tools/
TreeTagger/). TXM allows the user to annotate each instance of a word (that is, 
token) to its corresponding lemma (the canonical form of a set of words) and 
to proceed to a morphosyntactic labelling of each word in a corpus. The corpus 
can then be explored using Corpus Query Language (CQL) requests to tag and 
retrieve specific grammatical categories, forms, lemmas or any information 
attached to the word. A list of CQL requests was first automatically generated 
for each noun, verb or adjective lemma in the corpus. Rare lemmas (less than 
ten occurrences), stop words and common verbs (for example, “be” and “have”) 
were removed in the process and not included in subsequent analyses. For 
instance, this algorithm would go through the corpus and produce a unique 
CQL query (for example, (lemma = “fight”%c)) corresponding to any instance 
of the verb “fight” in the corpus (that is, “fight”, “fought” or “fighting”). The %c 
modifier incorporated in this request is used to neutralize the character case 
of assimilated lemma forms (that is, “fight”, “Fight” or “FIGHT”). An initial 
list of about 6,500 CQL requests was automatically generated in this way. This 
list was manually checked to remove CQL requests produced by incorrect 
transcription, to occasionally group certain requests under a single entity (for 
example, (lemma = “drama”%c)|(lemma = “dramatic”%c)), to merge bigrams 
when appropriate (for example, (lemma = “chief ”%c)()?(lemma = “state”%c) 
for “chief of state”) or to adjust to different orthographical forms (for example, 
(lemma = “Gorbatchev”%c)|(lemma = “Gorbatchov”%c)). After this initial check 
and adjustment, a total of 6,240 requests remained to summarize the 1,431,790 
tokens composing our corpus.

A lemma x document frequency matrix counting the number of occurrences 
was extracted and submitted to an LDA analysis performed using the Machine 
Learning for LanguagE Toolkit (MALLET; http://mallet.cs.umass.edu/topics.php). 
Topic models26,29,30 consider that documents are generated by mixtures of topics. 
In this context, a topic corresponds to the distribution of probabilities over all 
words present across all documents (how likely is a given word to be associated 
with a topic). From this perspective, a document can be generated by assigning 
a probability distribution over topics. For each instance in a document, a topic 
is chosen depending on its previous topic probability distribution, and a word is 
drawn from that topic. MALLET uses the Gibbs sampling algorithm to invert this 
process, inferring the set of topics that were responsible for generating a collection 
of documents and their probabilities over words.

We first trained topic models on the World War II news bulletins and reports 
corpus using the MALLET train-topic engine (see Extended Data Fig. 2 for an 
illustration of the topics created with this technique). We varied the number of 
topics allowed from 2 to 100, in increments of 1, setting the alpha parameter to 
50/N topics and the starting beta parameter to 0.1 (as suggested in other works 
modelling a large corpus of texts for semantic purposes62). For each number 
of topics, we used 500 iterations to estimate the word and document topic 
probabilities. We then used the MALLET inferencer tool to fit the LDA model 
to the Memorial pictures and estimate their topic probabilities. For that purpose, 
each image was treated as a new document and labelled with keywords (also 
lemmatized), which were directly derived from the Memorial captions underneath 
the pictures. A total of 449 lemmas was used to describe the Memorial pictures. 
Of these lemmas, 428 were also found in the list of 6,240 lemmas describing the 
corpus of news bulletins and reports. The topic inferential process thus led to a 
probability distribution matrix of 119 images x N topics, describing the posterior 
probability of a topic given an image.

A 119 image x 119 image RDM was then computed for each number of estimated 
topics using the distances between the distributions of topic probabilities for each 
pair of pictures (based here on the cosine distance, which provides a symmetrical 
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measure of the similarity between two topic vectors). However, given the randomness 
that the Gibbs sampling algorithm may introduce during parameter estimation, we 
reiterated the whole process ten times, leading to a 3D 119 image x 119 image x 10 
repetition RDM for each number of estimated topics. The measurements of the 
similarity between brain or behavioural RDMs and collective RDMs (beta coefficients 
of the regression model or Spearman’s correlation coefficients) were averaged across 
those ten repetitions of topic modelling. To summarize the whole process, for a given 
number of topics: (1) we trained a topic model on the French television news bulletins 
and reports corpus; (2) we fit this topic model to the Memorial pictures and their 
captions, treating each picture as a new document; (3) a 119 picture x N topic matrix, 
describing the posterior probability of a topic given an image, was extracted and 
transformed to a 119 × 119 RDM; and (4) this process was reiterated ten times, and 
for each topic number, the average similarity with brain or behavioural RDMs was 
computed across those ten instances.

Validation of the collective memory model and selection of the topic number. 
We sought to quantify the structure of shared representations across individuals 
and compared such shared schemas with our collective memory model. This 
procedure would also permit us to independently select an optimal number of 
topics to describe the collective structure of pictures that best corresponds to the 
shared memory. To this end, 54 native French speakers (23 males, 31 females) 
between 20 and 39 years old (mean = 27.3 years; s.d. = 5.6) performed the image 
arrangement task. This task was performed on the exact same 119 Memorial 
pictures, but unlike our MRI participants, who had visited the Memorial the day 
before, these new participants were completely unfamiliar with the Memorial. We 
derived 54 individual RDMs from the Euclidean distances between the images. 
We then performed DISTATIS33 to capture the shared structure of representations 
across those control individuals. DISTATIS is ideally suited to compute the best 
agreement or compromise across multiple distance matrices. The implementation 
in MATLAB of DISTATIS can be found at https://www.utdallas.edu/~herve/, 
but in brief: (1) each of the 54 RDMs was first transformed to a cross-product 
matrix after double-centring and normalization to its first eigenvalue; (2) the 
cosine similarity structure of all pairwise comparisons of the 54 normalized 
cross-product matrices was computed using the RV coefficient; (3) the RV 
coefficient matrix describing the relationships between RDMs was submitted to 
eigen-decomposition, and the compromise matrix corresponded to the sum of 
the normalized cross-product matrices weighted by their first eigenvalue; (4) the 
eigen-decomposition of the compromise produced factor scores, which described 
the position of each of the 119 images in an N-dimensional compromise space; and 
(5) the distance correlation matrix of these multidimensional compromise spaces 
then corresponded to the best agreement across all 54 individual RDMs derived 
from the behavioural image arrangement task. This distance correlation matrix can 
be viewed as a shared schema reflecting the common semantic organization across 
individuals. The collective RDMs extracted from the corpus of television news 
bulletins and reports were similar to the structure of shared memory measured 
across control individuals (Fig. 2c). This similarity between collective and shared 
memory was averaged by bins of five topics, and reached its maximum when six to 
ten topics were included during topic discovery. As a result, all subsequent analyses 
involving collective or semantic memory were performed using six to ten topics 
(and measures of similarity between brain or behavioural RDMs and collective or 
semantic RDMs were averaged within this selected number of topics).

Construction of a control model of the World War II semantic domain. We used 
French Wikipedia articles referring to World War II as a benchmark model of the 
specific semantic relationships between words related to World War II, and trained 
a topic model that we then fit to the Memorial pictures. This corpus (http://redac.
univ-tlse2.fr/corpus/wikipedia.html) included 664,982 articles edited until June 
2008, among which 2,643 articles were specifically related to World War II, and 
has been previously extracted from the dump French version of Wikipedia articles 
(http://dumps.wikimedia.org/) and processed using the same morphosyntactic 
tagging tool61 used to process our corpus of French television news on World 
War II. Once we had imported the corpus into TXM, we applied exactly the same 
method of analysis that we previously used to construct the model of collective 
memory (see Collective memory corpus description and analysis).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw behavioural and imaging data are archived at the GIP Cyceron Centre in 
Caen. The collective memory corpus is archived at the INAthèque (Bibliothèque 
Nationale de France) in Paris, which has the legal deposit. This corpus was 
collected by the MATRICE project (http://www.matricememory.fr/?lang=en), a 
multidisciplinary and technological consortium of research units, whose aim is 
to provide tools and technological and theoretical background to understand the 
relationship between collective and individual memory. Scientists interested in the 
analysis of this corpus are welcome to submit a project to the MATRICE project 
and join the consortium. The tagged Wikipedia corpus used for these analyses is 
available at http://redac.univ-tlse2.fr/corpus/wikipedia.html.

Code availability
The text processing and topic analysis of the collective memory and Wikipedia 
corpora were conducted using TXM (http://textometrie.ens-lyon.fr/) and MALLET 
(http://mallet.cs.umass.edu/topics.php) software. The MATLAB implementation 
based on SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) and the RSA toolbox (https://
github.com/rsagroup/rsatoolbox) of the first level and RSAs are available from the 
corresponding author on request.
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Extended Data Fig. 1 | results of searchlight analysis. A searchlight analysis following the surface curvature of the brain was ran to test the effects of 
collective schema, and contextual and semantic memory. At each searchlight, brain RDM was extracted and compared to RDM models using a regression 
model, thus producing a beta map for each participant (n = 24) and RDM model. To correct for multiple comparisons, the group-level beta map was 
submitted to maximal permutation testing using threshold-free cluster enhancement (TFCE58). blue regions indicate clusters surviving TFCE correction 
across the whole brain (P corrected < .05) for collective schema. There was no statistically significant evidence that brain regions were related to other 
RDM models using the searchlight approach.
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Extended Data Fig. 2 | Graph network of topic model. To illustrate the semantic model and the connections between words derived from our topic 
models, we computed a Lemmas x Lemmas correlation matrix using the estimated distribution of probabilities over 10 topics. This correlation matrix was 
then thresholded and transformed into a binary adjacency matrix by keeping the top 10% of the strongest connections between lemmas. The adjacency 
matrix is visualized here using a force vector algorithm proposed with the Gephi software (https://gephi.org/). Each node represents one of the 6,240 
lemmas. The color and the size of the node is determined by its maximal topic assignment and probability, respectively. Amongst the 6,240 nodes, 
only key words describing Memorial pictures and specifically translated into English, are displayed here for visualization purpose. The size of the label 
is proportional to its topic probability. The distribution of topic probabilities for each Memorial pictures is directly derived from the topic probabilities 
associated with these key words.
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Population characteristics Twenty-four right-handed native French speakers between the ages of 22 to 39 years (M = 28.6; SD = 4.4) were paid to 
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Ethics oversight The study was approved by the regional research ethics committee (Comité de Protection des Personnes Nord-Ouest III).
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Magnetic resonance imaging
Experimental design

Design type Event-related design

Design specifications 119 trials of 4.5 sec duration + 1-9 sec fixation cross over 3 fMRI sessions

Behavioral performance measures Button presses (yes/no) and RTs were recorded for target and distractor cue sentences during the task; Image position 
coordinates were recorded for image arrangement task.

Acquisition

Imaging type(s) functional and structural

Field strength 3T

Sequence & imaging parameters MRI data were acquired on a 3T Achieva scanner (Philips). All participants first underwent high-resolution T1-weighted 
anatomical volume imaging using a 3D fast field echo (FFE) sequence (3D-T1-FFE sagittal; TR = 20 ms, TE = 4.6 ms, flip 
angle = 10°, SENSE factor = 2, 180 slices, slice thickness = 1 mm, no gap, FoV = 256×256 ×180 mm3, matrix = 
256×130×180). This acquisition was followed by the functional sessions which were acquired using an ascending T2-star 
EPI sequence (MS-T2-star-FFE-EPI axial; TR = 2050 ms, TE = 30 ms, flip angle = 78°, 32 slices, slice thickness = 3 mm, 0.75 
mm gap, matrix 64×63×32, FoV = 192×192×119  mm3, 310 volumes per run).

Area of acquisition Whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Data were analyzed using Statistical Parametric Mapping software (SPM12, Wellcome Department of Imaging 
Neuroscience, London, UK). During pre-processing, images were first spatially realigned to correct for motion, before 
being corrected for slice acquisition temporal delay. After coregistration with the T1 structural image, functional images 
were then normalized using the parameters derived from the nonlinear normalization of individual gray-matter T1 
images to the T1 template of the Montreal Neurological Institute (MNI). 

Normalization Unwarped and unsmoothed images were used for RSA. Image normalization was nonetheless needed to compute the 
forward deformation field and its inversion, to normalize searchlight images or wrap back mPFC ROIs to native space 
(see below), respectively. The use of unsmoothed images is important for RSA as it preserves the fine-grained spatial 
pattern that characterizes the representational geometry of a region. 

Normalization template MNI

Noise and artifact removal The pre-processed time series were then high-pass filtered to 1/128 Hz in each voxel. Regressors of no interest were the 
six realignment parameters to account for linear residual motion artifacts. Temporal autocorrelation between the GLM 
residuals was corrected using the first order autoregressive process resulting in pre-whitened data after restricted 
maximum likehood estimation.

Volume censoring We did not applied volume censoring.

Statistical modeling & inference

Model type and settings Representational Similarity Analysis. Brain RDMs were computed as follows: for each voxel, vector of activity across 
recalled pictures was mean-centered and scaled to its standard deviation (i.e. z-score), then, for each pair of pictures, 
the activity patterns in a given ROI were compared using spatial correlation and the dissimilarity was then given by 1 
minus the correlation. The upper triangular form of these brain or behavioral RDMs was then extracted and compared 
to the upper triangular form of RDM models. These comparisons between brain and model RDMs were achieved using 
both a regression model (including all models as predictors) and a isolated correlation approach. Both regressors and 
data were initially rank-transformed to test for non-linear monotonic relationship. Second-level nonparametric random-
effects analyses were performed by bootstrapping the subject set for ROI or using randomise function in FSL for the 
whole-brain searchlight.

Effect(s) tested The upper triangular form of these brain RDMs was compared to the upper triangular form of RDM models describing 
collective schemas (derived from 30 years of news and bulletins broadcast on French national television), semantic 
distances (derived from Wikipedia WWII articles), as well as contextual spatial distance (Euclidean distances of picture 
spatial positions), and temporal distance (Euclidean distances of picture temporal rank order during Memorial 
exploration). 

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

The mPFC were defined anatomically using the AAL atlas, and was split into ventral (vmPFC) and dorsal 
(dmPFC) ROIs. The dmPFC corresponded to the bilateral frontal superior medial gyrus of the AAL atlas 
(indexes 2601 and 2602). The vmPFC mask included the bilateral frontoorbital medial gyrus (indexes 
2611 and 2612), the bilateral rectus (indexes 2701 and 2702), as well as the ventral portion (Z 
coordinates inferior or equal to zero) of the bilateral anterior cingulum (indexes 4001 and 4002). 

Statistic type for inference
(See Eklund et al. 2016)

The group-level correlation map was submitted to maximal permutation testing using threshold-free cluster 
enhancement.

Correction For ROIs, the expected proportion of type I error across multiple testing for both test of RDM model relatedness or 
model comparison was controlled using the False Discovery Rate (FDR) correction, with a desired FDR q = .05 and 
assuming a positive dependency between conditions.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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