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LIUM - Le Mans Université, Université Paris-Saclay, CNRS, LIMSI, 91400, Orsay, France,
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ABSTRACT

This paper presents a qualitative study of errors produced by an end-
to-end spoken language understanding (SLU) system (speech signal
to concepts) that reaches state of the art performance. Different stud-
ies are proposed to better understand the weaknesses of such sys-
tems: comparison to a classical pipeline SLU system, a study on the
cause of concept deletions (the most frequent error), observation of a
problem in the capability of the end-to-end SLU system to segment
correctly concepts, analysis of the system behavior to process unseen
concept/value pairs, analysis of the benefit of the curriculum-based
transfer learning approach. Last, we proposed a way to compute em-
beddings of sub-sequences that seem to contain relevant information
for future work.

Index Terms— Spoken language understanding, end-to-end
system, error analysis, neural network

1. INTRODUCTION
Despite recent progress, spoken language understanding (SLU) sys-
tems make a significant amount of errors in some tasks even with
sophisticated end-to-end (E2E) neural architectures. Limited effort
has been made so far for making a systematic analysis of these er-
rors, probably because explaining the cause of them appears to be
difficult. It would be useful to use prior knowledge to associate er-
rors groups with observations that may explain them. For example,
it would be useful to know how deletions are due to the fact that clue
words defining concepts in dictionaries have been uttered but not rec-
ognized or ambiguities of clue words or word spans annotated with
the mention of a concept have been correctly hypothesized, but the
SLU system has not been able to focus on distant context relevant
for reducing the ambiguity of the hypothesized words. Explaining
these errors may suggest modifications on neural architecture com-
ponents for error analysis. Useful prior knowledge can be the se-
mantic model of an application, the difficulty of representing words
uttered with very few phonemes not well distinguished by internal
latent representations or the erroneous detection of the boundaries of
concept mentions. Methods for sentence, grammatical and seman-
tic error correction applied to text documents can be found in [1–3].
ASR error adaptation for SLU has been proposed in [4]. Error anal-
ysis for ASR is discussed in [5]. In [6], a SLU improvements have
been presented by managing error reduction based on agreement of
different SLU components.

First neural end-to-end SLU systems, that directly extract se-
mantic concept from speech audio signal appeared in 2018 [7–9].
Very recently, such approaches reached state of the art results [10],
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similar to the results got by pipeline (PIP) approaches that apply se-
quential processes to extract semantic information from speech sig-
nal: automatic speech recognition (ASR), automatic enrichment of
ASR outputs (part of speech tagging, chunking, dependency label-
ing. . . , and at last natural language understanding (NLU) process
applied on enriched ASR outputs.

In this study, we analyze the errors made by an state-of-the art
end-to-end system. By understanding its main weaknesses, we ex-
pect to discover how to continue improving the performance of such
approaches.

2. SYSTEM DESCRIPTION
The end-to-end SLU system used for this work is the same as the
one used in [10, 11]. Its architecture is very closed to the Deep-
Speech2 architecture [12]. It consists of a stack of two 2D-invariant
convolutional layers (CNN), five bidirectional long short term mem-
ory layers (bLSTM) with sequence-wise batch normalisation and a
final softmax layer.

This system is trained with the Connectionist Temporal Classifi-
cation (CTC) loss function [13]. This function allows the system to
learn an alignment between an audio input and a character sequence
to produce. Input features are sequences of log-spectrograms of
power normalized audio clips calculated on 20ms windows. Output
sequences consist of a sequence of characters composed of word and
semantics concepts. Semantics concepts are represented by starting
tags and ending tags before and after words supporting these con-
cepts.

Starting tags defines the nature of concept while ending tag
will only close an opened tag. We use several starting tags, one
for each semantic concept, but only one ending tag. For example,
the sentence ”I would like two double-bed rooms” is represented
with its semantic information as ”I would like <nb room two >
<room type double-bed rooms >”. In this example, <nb room
and <room type are two starting tags defining respectively the
semantics concepts ”number of room” and ”room type”. The ’>’
symbol represents the unique closing tags. Notice that starting and
ending tags are actually represented by a single character within
the character sequence produced by the neural network. Previous
example become ”I would like ł two > ø double-bed rooms >”,
where ’ł’ is ”<nb room” and ’ø’ is ”<room type”.

In addition, we use the same star mode as presented in [10, 14].
This mode allows the CTC loss function to be more sensitive on
concepts and their values instead of unlabelled words. It consists of
replacing all the characters between two concepts by a single star.
Previous example become ”* ł two > ø double-bed rooms >”.

Our end-to-end SLU system is trained following the curriculum-
based transfer learning approach we proposed in [10]. It consists
on training the same model successively with different tasks follow-
ing a curriculum strategy. To respect this strategy, tasks are ordered
from the most generic one to the most specific one: speech recog-



nition (ASR), then named entity recognition (NER) and finally se-
mantic concept extraction (SLU). Named entity recognition task is
trained following the same way as the semantic concept extraction
task. We add boundaries of named entity concepts inside the char-
acter sequences to be produced. We apply transfer learning between
each task and keep all the parameters of the produced model of the
current training step as initialization of the next training step, except
the top layer (softmax). Parameters of this layer are fully reseted
because of the change of output labels at each training step. Thanks
to this strategy, our end-to-end models reached state-of-the art per-
formance. More details are described in [10].

3. MEDIA CORPUS
The MEDIA corpus is a French dataset of audio recordings with
manual annotations, dedicated to semantic extraction from speech in
a context of human/machine dialogues. The corpus has manual tran-
scription and semantic annotation of dialogues from 250 speakers. It
is split into the following three parts [15]: (1) the training set (720
dialogues, 12K sentences), (2) the development set (79 dialogues,
1.3K sentences, and (3) the test set (200 dialogues, 3K sentences).
A concept is defined by a label and a value, for example the value
2001/02/03 can be associated to the concept date [15–17]. The ME-
DIA corpus is related to the hotel booking domain, and its annotation
contains 76 semantic concept tags: room number, hotel name, loca-
tion, date, room equipment, etc. Some concept value pairs appearing
in turns of the test set may not appear in the train set, requiring gen-
eralizations that the SLU architecture may not be able to perform.
Thus problem has been investigated in [17].

4. ERROR ANALYSIS
To start the analysis on the MEDIA data, we propose to compare the
global distribution of errors produced by two state-of-the-art SLU
systems. The first one is built following a classical pipeline approach
while the second system is the end-to-end approach presented above.
As described in [10], the pipeline approach consists of a compo-
nent chain composed of a speech recognition (ASR) component, di-
verse natural language processing components in order to enrich the
ASR outputs with linguistic information (part-of-speech, chunking,
governor words...), and natural language understanding component,
based on a Condition Random Field model, that labels the enriched
ASR outputs with semantic labels.

Error distribution of the pipeline system on the MEDIA devel-
opment dataset is provided on figure 1. For greater clarity, we have
only kept the 30 concepts with the highest number of errors.

Fig. 1. Error distribution on MEDIA dev dataset for PIP approach

The figure 1 shows us that for most of the concepts, the major
error type is deletion. The five concepts with most errors are ”lienref-
coref” (that represents coreference word that refers to a previous en-
tity), ”connectProp” (that is a word that connect two properties of the

same concept frame), ”localisation-ville” (city location), ”reponse”
(response) and ”objet (object)”. Error distribution of the end-to-end
system on the same dataset is provided on figure 2. We also have
only kept the 30 concepts with the highest number of errors.

Fig. 2. Error distribution on MEDIA dev dataset for E2E approach

As for the pipeline error distribution, we can observe that dele-
tion is also the most represented error. The five concepts with most
errors are ”connectProp”, ”lienref-coref”, ”objet”, ”reponse” and
”command-tache” (task command). Among the five top erroneous
concepts, we notice that four ones are shared by both end-to-end and
pipeline approaches, while city location seems less problematic for
end-to-end system than task command that is better handled by the
pipeline system. These error distributions appear to be similar and
show frequent errors on domain independent concepts correspond-
ing to logic operators such as AND, or reference mentions such as
IT or ordinal numbers. Furthermore, these concepts are mentioned
by a single word that is frequently used for connecting items that
are not relevant for the application semantic domain. A further
analysis of the in-domain mentions of these concepts shows that
the most relevant context for reducing the detection uncertainty is
made of mention of specific domain concepts. This suggest that it is
worth considering, in future work, the introduction of an additional
component that performs a sort of specific island-driven semantic
parsing.

4.1. Transcription problem
In this section, we investigate the potential causes of the high number
of concept deletions, especially on the end-to-end system.

We focus this study on the concepts with highest number of er-
rors on the MEDIA dev dataset. They are ”connectProp”, ”lienref-
coref” and ”objet”. The ”connectProp” concept is “logical connec-
tion” whose most frequent mention is a function word et (and in
English) uttered only by the vowel phoneme, and is annotated only
for connections between application domain concept mentions. The
”lienref-coref” concept is the reference to a coreferent that could
be in the dialogue history. Its most frequent mentions are function
words such as “it” or other short spans such as “the first one”, diffi-
cult to segment or to detect. The ”objet” concept is relevant only if
related to the mention of an application domain concept and required
a context difficult to characterize for reducing ambiguities.

The analysis reveals that there are three major cases when a dele-
tion occurs:

1. automatic transcription is OK, meaning that the end-to-end
system succeeded in recognizing the word supporting the
concept, while the concept was not detecting;

2. automatic transcription is wrong, so the concept cannot be
detected;

3. automatic transcription is OK, but the word supporting the
concept has been nested in another contiguous concept.



Table 1. Most frequent deletions errors on the MEDIA dev dataset
Focused Nb Correct Wrong Nestedconcept Deletion ASR ASR

connectProp 39 28 6 5
lienref-coref 33 19 10 4

objet 38 31 4 3

As we can see in table 1, a major part of the time a deletion
occurs even if the system produces a good transcription. Deletion
of concepts are not mainly caused by the speech transcription ca-
pability of our end-to-end system. It is a noticeable result since for
”connectProp” and ”lienref-coref” support words are very small ones
with very few phonemes, like ”et” (and) or ”il” (it). These results
show that the major part of the errors comes from semantic labeling
problem.

As a complement, in the sequences produced by the system for
these deletion, we regularly observe the presence of ending tags
without any associated starting tags. For instance for the 39 deletion
errors of the ”connectProp” concepts in the development corpus, we
observe 11 cases with an ending tag without starting tag. This rep-
resents more than 28 % of the deleted concepts. We propose in the
next section an analysis of this segmentation problem.

4.2. Segmentation problem
To tackle the concept segmentation problem, we propose to learn
the segmentation as another task added inside the curriculum-based
transfer learning approach. We replace each starting tag by a unique
’<’ inside the sequence to be produced by the system for the ME-
DIA task. The segmentation task is learned before the training on
the final MEDIA task. So, the curriculum-based transfer learning
approach consists of a learning chain of 4 tasks following this order:
ASR, NER, SLU segmentation, and SLU. To augment our SLU data
we use two different corpora for this tasks. MEDIA which is our
target task and PORTMEDIA which is a corpus dedicated to theater
ticket booking close to the MEDIA task. By the use of these two
different corpora, we split the SLU task into two training steps, first
step with PORTMEDIA and MEDIA together (PM+M) and second
step with only MEDIA dataset (M). The segmentation task is ap-
plied only for the final MEDIA task and placed between the two SLU
training steps. Final learning chain consists on five different training
following this order: ”ASR •NER •PM +M •Mseg •M”. An-
other learning chain consists of applying the star mode for the final
MEDIA task.

For these experiments, we used two different metrics Concept
Error Rate (CER) and Concept/Value Error Rate (CVER) for eval-
uation. CER is a metrics similar to the word error rate metrics but
applied on concepts. CVER is very close to CER but evaluates con-
cept/value pairs instead of evaluating only concepts. Results with a
greedy decoder on the MEDIA test set are reported in table 2. The
training chain 1 and 3 are reported from previous work in [10].

Table 2. Comparison between SLU systems with and without a seg-
mentation task in greedy decoding on the MEDIA test

Training chain CER CVER
1. ASR •NER • PM +M •M 21.6 27.7
2. ASR •NER • PM +M •Mseg •M 20.7 27.2
3. ASR •NER • PM +M •M? 20.1 27.2
4. ASR •NER • PM +M •Mseg •M? 20.8 27.7

These results show improvement by the learns of the segmenta-
tion as an intermediate task by reducing the CER from 21.6 to 20.7

in the case of a training chain without star mode.
In our previous work [10], we reach the best result by the use

of a star mode which allows the CTC loss function to be more focus
on concepts and their values instead of unlabelled words. It consists
of replacing all the characters between two concepts by a single star.
Example of the section 2 become ”* ł two > ø double-bed rooms
>”. We applied this mode on the MEDIA task after the segmenta-
tion task training. Results show that we cannot reach an improve-
ment by the learns of the segmentation before the use of the star
mode. We also notice that the integration of the segmentation task
into the curriculum-based transfer learning approach allows us to get
the same CVER value (27.2%) with the normal mode (that produces
both full transcription and semantic tags) as with the star mode (that
produced semantic tags and only transcription of concept value).

4.3. Unseen Concept/Value pairs
In this section, we propose to analyze the behavior of our system
to process Unseen Concept/Value pairs (UCV). We define the UCV
as the Concept/Value pairs seen in the MEDIA development dataset
which do not appear in the training dataset. On the development
dataset, there is a total of 533 UCV. Table 3 reports the number of
UCV correctly retrieved by the end-to-end system with and without
the use of the NER task in the curriculum-based transfer learning
approach. For both system, we report the number of correct value.

Table 3. UCV correctness on MEDIA dev dataset. CV means Con-
cepts/Values pairs are corrects and V means Values only are corrects

System correct correct
CV V

ASR •NER • PM +M •M 132 38
ASR • PM +M •M 124 36

For both systems, we can observe a small number of correct
values. As there are 533 UCV in the MEDIA development dataset
and the well recognized UCV represent around a quarter of the total
UCV, that means that speech transcription is wrong for a major part
of the UCV.

We also notice that the use of the NER task during the training
yields an improvement of 6% of relative gain. In order to get a more
precise idea of the contribution of the use of the NER task during the
training, we measured the evolution of the number of errors for each
concept, with or without the use of the NER task during the training.
Figure 3 shows this evolution. Globally, this evolution is strongly
positive for a lot of concepts, but sometimes with a negative impact.

Fig. 3. Error difference by the use of NER task in the curriculum-
based transfer learning approach

5. EMBEDDINGS ANALYSIS
To give more insight to the error analysis we propose to perform a
visual evaluation of concept embeddings by computing the t-SNE
representations.



Fig. 4. t-SNE representations of concept projection with colored dots in function of the recognized semantic class (left) versus the same with
red/green colors that correspond to Error/Correct concepts (right).

5.1. Frames to words and concepts: embedding extraction
To accomplish the visual evaluation, we have to extract the word and
concept embeddings from the end-to-end SLU system. The embed-
dings are extracted from the last bLSTM layer, that corresponds to
sequential representations of the input frames. To obtain a represen-
tation for each word and concept we were based on CTC outputs to
know the number of frames for each word and concept. Hence, the
word or concept embeddings correspond to the sum of its frame em-
beddings. For example : if the CTC output of the recognized word
“bonjour” corresponds to “bbb@@@oon@jjourrr” (17 frames), this
word is represented by the sum of its 17 frame embeddings.

5.2. Visualization
Figure 4 illustrates two t-SNE representations of the concept embed-
dings extracted from Dev dataset. The first representation(left) cor-
responds to the projection with colored dots of the different recog-
nized semantic classes (concepts). It shows that most of the concepts
of the same class are compact and clustered in the continuous space.
The second one (right), illustrates the projection of the different rec-
ognized semantic classes with red/green colors, that corresponds to
Error/Correct concepts. Note that the annotation of the concepts to
Error/Correct is computed based on the alignment with the reference
transcriptions. From the second representation we observe that the
main errors (red dots) made by our end-to-end SLU are located in
the areas where the concepts are mixed without any structure in the
continuous space.

We consider this observation important for future work. Three
axes would be explored:

1. how to take benefit of this semantic representation cartogra-
phy to improve the performance?

2. how to force the system to represent concepts in a more rele-
vantly structured space, for instance by injecting some a priori

knowledge in the training process.

3. how to take benefit of this cartography to auto-detect uncer-
tainty and errors? Indeed, it seems that the position in the
continuous space of the embedding provides relevant infor-
mation. Notice that these embedding are computed on vari-
able sub-sequences of frame embedding, while currently the
neural network takes decision frame by frame: these embed-
dings bring another representation of information not used as
is by the model.

6. CONCLUSION

This paper presents a qualitative study of errors produced by an end-
to-end SLU system (speech signal to concepts) that reaches state of
the art performance. We made a comparison to a classical pipeline
SLU system about the error distribution among concepts. Also, a
study on the cause of deletions (the main nature of errors) showed
that the problem does not come from the speech recognition capa-
bility of the system. We detected a problem in the capability of the
end-to-end SLU system to segment correctly concepts and proposed
a way to attenuate this during the training. Then, We analyzed the
behavior of the system to process unseen concept/value pairs and
confirmed the interest of using transfer learning from the named en-
tity recognition task to address this issue. Last, we proposed a way
to compute embeddings of sub-sequences that seem to contain rel-
evant information for future work. The error analysis suggests that
concepts requiring specific attention are generic and not domain de-
pendent, while their relevance may be domain dependent. In fact
application domains as MEDIA may have connector instances re-
lating domain semantic contents, while other instances of the same
connector mention domain irrelevant semantic contents and should
not be taken into account.
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“Investigating adaptation and transfer learning for end-to-end
spoken language understanding from speech,” Interspeech,
2019.

[12] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-
hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al., “Deep
speech 2: End-to-end speech recognition in English and Man-
darin,” in International Conference on Machine Learning,
2016, pp. 173–182.

[13] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent neural net-
works,” in Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 369–376.

[14] Natalia Tomashenko, Antoine Caubriere, Yannick Esteve, An-
toine Laurent, and Emmanuel Morin, “Recent advances in end-
to-end spoken language understanding,” in SLSP, 2019.

[15] Vedran Vukotic, Christian Raymond, and Guillaume Gravier,
“Is it time to switch to word embedding and recurrent neural
networks for spoken language understanding?,” in Interspeech,
2015.

[16] Laurence Devillers, Hélène Maynard, Sophie Rosset, Patrick
Paroubek, Kevin McTait, Djamel Mostefa, Khalid Choukri,
Laurent Charnay, Caroline Bousquet, Nadine Vigouroux, et al.,
“The French MEDIA/EVALDA project: the evaluation of the
understanding capability of spoken language dialogue sys-
tems.,” in LREC, 2004.

[17] Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh
Tomar, and Yoshua Bengio, “Speech model pre-training for
end-to-end spoken language understanding,” arXiv preprint
arXiv:1904.03670, 2019.


