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Direct Text to Speech Translation System using
Acoustic Units

Victoria Mingote, Pablo Gimeno, Luis Vicente, Sameer Khurana, Antoine Laurent, Jarod Duret

Abstract—This paper proposes a direct text to speech transla-
tion system using discrete acoustic units. This framework employs
text in different source languages as input to generate speech in
the target language without the need for text transcriptions in this
language. Motivated by the success of acoustic units in previous
works for direct speech to speech translation systems, we use the
same pipeline to extract the acoustic units using a speech encoder
combined with a clustering algorithm. Once units are obtained,
an encoder-decoder architecture is trained to predict them. Then
a vocoder generates speech from units. Our approach for direct
text to speech translation was tested on the new CVSS corpus
with two different text mBART models employed as initialisation.
The systems presented report competitive performance for most
of the language pairs evaluated. Besides, results show a remark-
able improvement when initialising our proposed architecture
with a model pre-trained with more languages.

Index Terms—Acoustic Units, CVSS corpus, Direct Text to
Speech Translation, mBART

I. INTRODUCTION

DURING the last years, the huge increase in the available
unlabelled data for text and speech in all languages

of the world has led to the need to develop powerful new
approaches to process this data. Also, recent advances in self-
supervised learning have provided the opportunity to benefit
from this data and produce general-purpose representations.
These representations can be employed for different tasks and
languages with impressive results, e.g. for speech processing
using XLS-R [1] or for text processing with mBART [2], [3]
and mT5 [4]. Moreover, recently many works have focused on
the development of multilingual and also multimodal systems,
such as mSLAM [5] and SAMU-XLSR [6]. These systems aim
to reduce communication problems between people speaking
and writing different languages, especially in the case of
under-resourced languages.

Previous works have established state-of-the-art perfor-
mance on a variety of text and speech downstream tasks
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including machine translation, specifically for the text to text
and speech to text translation tasks. However, research interest
in speech to speech and text to speech translation tasks is
still growing, as these tasks remain a major challenge due
to the scarcity of labelled data for fine-tuning the systems.
These tasks seek to convert speech and text generated in a
source language into speech in another target language. In the
case of conventional speech to speech translation, systems rely
on a cascade approach that translates speech into text using
Automatic Speech Recognition (ASR) followed by text to text
machine translation, or a speech to text system. In both cases,
after the mentioned steps, a speech synthesis model is applied
to generate speech in the target language.

The conventional systems mentioned above achieve high
performance, but these systems are text-centric. Thus, hav-
ing speech in one language as input, an intermediate text
representation in the target language has to be obtained as
a preliminary step to generate speech. Therefore, the idea
of direct speech to speech translation without relying on
intermediate text representation has been recently explored
in the literature [7], [8]. This approach has shown great
computational benefits compared to the cascade approach.
Nevertheless, a performance gap can still be observed due
to the challenges of simultaneously learning the alignment
between two languages and the process of correctly mapping
spectrograms from source to target languages. To tackle the
existing gap, the research described in [9], [10] has proposed
a direct speech to speech translation system which is trained
to predict a set of discrete acoustic units extracted from the
target speech. In addition to the direct speech to speech system,
these works have introduced a text to speech translation part
using discrete acoustic units. However, these works apply text
to unit translation to the output of an ASR system. Hence, the
proposed approach is not considered a direct text to speech
system, as it does not take an original text input directly to
produce the output speech. Moreover, the performance of this
system could be influenced by the use of the output of the ASR
module as input, the quality of which may affect the subse-
quent steps. On the other hand, considering the limitations that
still exist in direct translation and the relevance of multimodal
and multilingual systems, [11], [12] have developed a system
for speech to speech and text to speech translation. In this
system, a common fixed representation for speech and text is
built to carry out zero-shot cross-modal translation.

Unlike previous works, where text to unit translation sys-
tems were used only combined with ASR, this paper describes
an implementation of a framework for generating speech in a
given language from text input in a different language. The
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task can then be formally defined as a direct text to speech
translation task. Applying this framework, we use text as
source input to obtain discrete acoustic units as intermediate
representations to generate speech. Thus, this text framework
allows us to generate the same discrete units as using speech
as input. The use of this framework could be useful for
different real applications. For instance, text to speech transla-
tion could be employed as a data augmentation technique for
low resource languages or to create audio versions of written
content, such as podcasts or story-telling services from texts.
Furthermore, in this work, we have also analyzed the effect
of using two pre-trained models with a different number of
languages as encoder-decoder for the fine-tuning of our direct
text to speech system in a new corpus called Common Voice-
based Speech-to-Speech (CVSS) translation [13]. This new
CVSS dataset has recently been released to address the issues
of scarcity in end-to-end labelled data for direct speech to
speech and text to speech translation. In addition, the number
of languages in similar previous works has also been limited
to mostly high-resource languages with 10 different languages.
However, with this new dataset, the text to speech translation
task has been evaluated on more than 20 input languages.

This paper is laid out as follows. Section II provides a
review of the existing approaches which inspire this work, and
introduces the proposed direct text to speech framework using
acoustic units. The experimental setup is detailed in Section
III, focusing on the data and the evaluation protocol. Results
and discussions are given in Section IV. Finally, conclusions
and future lines are presented in Section V.

II. PROPOSED METHOD

A. Preliminaries: Direct Speech to Speech Translation

Nowadays, there is an expanding line of research in direct
speech to speech translation in which the development carried
out in [9], [10] has had a great impact. These works have
introduced the first systems based on real speech data as target.
Thus, instead of predicting continuous spectrograms as in [7],
[8], discrete units learned from self-supervised representations
of the target speech are predicted. The system proposed is an
encoder-decoder based on a sequence-to-sequence transformer
model for speech-to-unit translation.

To create the system described in [9], [10], two different
blocks are integrated. First, a multilingual Hidden unit BERT
(mHuBERT) [14] is employed to extract representations from
the target speech that are then discretized using a quantizer
model. mHuBERT was chosen as generator due to its superior
performance across different speech tasks compared to other
unsupervised models. By extracting the discrete units with
this approach, the encoder-decoder speech to unit translation
model can be trained using the units as target sequence. In a
second step, and once this model is trained, the target speech
is generated from the discrete units.

B. Direct Text to Speech Translation

Overview.: In view of the success achieved by the use of
acoustic units for direct speech to speech translation systems
in the preliminary works, this work presents a framework

to apply the same approach for direct text to speech trans-
lation. On the other hand, the need for multilingual and
multimodal systems has also motivated several state-of-the-
art translation systems where speech and text are permitted
as input. Therefore, we propose a multilingual framework in
which text data is employed as the input source to predict
discrete acoustic units as target without the need to know the
transcription in the target language. This aspect is especially
relevant in low resource languages, where finding text-speech
transcription pairs can be difficult. In addition, the application
of the approach presented in this section can be seen as a data
augmentation strategy to be used in the case of these languages
with scarcity of available resources.

Text to Unit translation framework

Text Encoder
(mBART)

Unit 
Decoder
(mBART)

Target speech

Source text

Fig. 1. Direct text to speech translation system, obtaining acoustic units with
source text data in any language to generate target speech in English language.

As illustrated in Figure 1, an encoder-decoder architecture
is used to perform the direct text to speech translation system.
Since the conversion of text inputs into acoustic units can
be considered as a machine translation task, we have used
a pre-trained text model as initialisation for our encoder-
decoder architecture. Namely, we have considered multilingual
BART (mBART) model in its two variations, mBART25 and
mBART50 [2], [3]. The main difference between both models
is the number of languages used in the training process. After
initialisation, the full architecture is fine-tuned on the text to
acoustic unit translation task. The units employed as targets for
this training have previously been extracted with an acoustic
unit discovery system. Finally, in inference, the HiFi GAN
[15] unit to speech vocoder is applied to generate target speech
utterances. This unit-based vocoder is a modified version of the
original HiFi-GAN neural vocoder presented in [16]. For this
model, we have used the pre-trained English vocoder available
at this link1. This last part corresponds to the orange block in
Figure 1 and could be shared with a direct speech to speech
system.

Learning.: To train the direct text to speech translation
system, pairs of examples (xS , uL) are used where xS is the
source text in any of the multiple languages employed, and
uL is set of acoustic units extracted from the target speech.
The generation of these units is carried out by a pre-trained

1https://github.com/facebookresearch/fairseq/blob/main/examples/speech
to speech/docs/textless s2st real data.md

https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/textless_s2st_real_data.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/textless_s2st_real_data.md
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mHuBERT model [10] and a k-means quantizer1. Concerning
the mHuBERT model, it is based on the HuBERT Base
architecture trained using a combination of English, Spanish,
and French data from VoxPopuli [17]. Speech representations
are learned in a self-supervised way using unlabelled data
as explained in [14], [18]. After that, a k-means quantizer
is applied to the representations learned in the layer 11th of
the mHuBERT model to generate discrete labels or units. This
layer is chosen as done in similar direct translation works [10].
Several papers have shown that HuBERT like models provide
the most meaningful phonetic and word information towards
higher layers of the model [19], [20].

To carry out the k-means quantizer process, the two fol-
lowing steps are applied. First, for training, N centroids
are learned using a fraction of the training data. After that,
in inference time, the output of the quantizer is chosen as
the index of the centroid minimising the euclidean distance
between the input embedding and N centroids learned. In this
case, the number of k-means clusters employed is 1000 as
done in [10]. Moreover, the discrete unit sequences extracted
from the k-means algorithm could have consecutive repetitions
of the same units. Therefore, to generate the final target
units, the original unit sequences are collapsed to convert
consecutive equal units into one single unit (e.g., 1 1 2 2
3 3 −→ 1 2 3). This reduction has been applied since the work
described in [9] showed that collapsing unit sequences did
not lead to a decrease in performance and was more efficient.
As these target units are discrete, the text to unit translation
system is trained to minimize the cross entropy loss between
the predicted and real units using label smoothing with a
probability of 0.2.

Hyperparameters.: As optimizer for the fine-tuning pro-
cess, we have employed the Adam optimizer with ϵ = 1e− 6,
β1 = 0.9, β2 = 0.98, learning rate 3e − 5, and polynomial
learning rate decay scheduling. The model is trained using
the fairseq toolkit [21] with a dropout of 0.3 and an attention
dropout value of 0.1. The training process was carried out
employing 8 V100 (32 GB) NVIDIA GPUs.

III. EXPERIMENTAL SETUP

A. Data
For the direct text to speech translation task, two stages

have been carried out. Initially, reference acoustic units are
extracted and then text to speech framework is trained using
them as targets. To develop both stages, the following data
from the new CVSS translation corpus [13] are employed.

Acoustic Units.: For obtaining the acoustic units, the
English audios from the CVSS-C (canonical voice) dataset
have been used as target speech. These target audios are
forwarded through the acoustic unit discovery system based on
mHuBERT model and k-means clustering approach to obtain
the discrete unit representations.

Direct Text to Speech Translation.: Once the acoustic
units are obtained, they are employed as targets to train the
direct text to unit translation system. Considering that the
CVSS dataset also provides the text transcription for the input
audios, we have used this dataset to perform 21 languages to
EN text to speech translation tasks.

21 32 … 1 34

Source text Target speech Hyp text

Ref text

ASR

BLEUText to speech translation

Acoustic units

Fig. 2. Text to speech evaluation pipeline, using an ASR model to generate
hypothesis text and compare with reference text to obtain BLEU scores.

B. Evaluation

Aiming to evaluate the text to speech translation task, and
considering that it is not feasible to directly compare two audio
signals, we adopt a similar framework as the one described in
[8] to evaluate the translation quality of the generated speech.
This setup is described in Figure 2.

As it can be seen, an ASR system is used to generate
transcriptions for the target speech. The ASR system used2 is
an open-source English model based on wav2vec 2.0 features
trained through a self-training objective [22]. The evaluation
metric shown in our results is then computed as the BLEU
score between the obtained transcriptions and the reference
text which is normalized in CVSS to perform this standard
evaluation. This metric provides an objective measure of
speech intelligibility and translation quality.

IV. RESULTS AND DISCUSSION

As mentioned above, to build the direct text to speech
translation system, we have explored different models as
initialisation for the encoder-decoder architecture. Therefore,
we have conducted experiments to evaluate the proposed ap-
proach using pre-trained mBART25 and mBART50 models. In
addition, we also developed a cascade system in order to have a
reference system for comparison. This system is composed of
a machine translation module based on the mBART50 model
followed by a speech synthesis module implemented using
tacotron2 [23].

Fig. 3. BLEU results on CVSS test set, comparing the cascade and two
mBART models used as encoder-decoder initialisation and divided into groups
of languages according to the number of resources available for each of them.

2https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
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Fig. 4. BLEU results on CVSS data test partition for each language available. 1 Languages not present in mBART-25, but present in mBART-50. 2 Languages
not present in mBART-25 or mBART-50.

Figure 3 presents the BLEU scores in the test partition of the
CVSS dataset for our proposed direct text-to-speech system
and cascade approach. In this figure, the performance is shown
separately for high, medium and low resource languages.
We have considered high resource languages as those with
more than 100h, and low resource languages as those with
less than 10h of training data. Moreover, the average of the
results is also presented. These results show that the best
proposed approach achieves performance close to the cascade
system. Furthermore, our direct text to speech system has the
advantage that it does not need to know the transcription in the
target language, while the cascade system needs it to perform
the whole translation process. Note that, if we focus on the
two alternatives for the direct text to speech system, a large
performance improvement in all splits is observed when the
mBART50 model is used as a pre-training model to initialize
our encoder-decoder pipeline.

For a more in-depth analysis of the differences found
between the two types of mBART models employed, we can
see the results for each language of the 21 languages available
in the CVSS dataset in Figure 4. This figure shows that the per-
formance of all the languages improves using mBART50. In
addition, the improvement achieved is particularly remarkable
in the following translation pairs of languages: fa-en, pt-en,
mn-en, sv-en, sl-en, ta-en, id-en, marked with 1 in the figure.
The relevant performance improvement is motivated by the
fact that these languages are not included in mBART25 but are
part of the training languages in mBART50. Note that even
languages, such as Catalan (ca) and Welsh (cy) marked with 2,
that are not included in either mBART25 or mBART50, benefit
from the influence of having more languages in the second
model and improve their results. To highlight these graphical
results, we have calculated the improvement achieved in the
three language sets. We can observe that an average relative
improvement of 40% is achieved in terms of BLEU score in
the languages employed for the pre-training of both mBART
models. In the case of the languages included in mBART50,
an average relative improvement of 501% is obtained, while

for the languages not present in either of the two, mBART50
achieves an average improvement of 136%. These improved
results remark the fact that the use of a pre-trained multilingual
model in more languages, mBART50, shows a great impact on
the results obtained for the new languages included, and also,
this increased multilingualism helps to improve the results in
languages not presented during the pre-training process.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a new approach to carry out
direct text to speech translation. This approach is based on an
encoder-decoder framework using text as input and discrete
acoustic units as the target sequence. Hence, multilingual
text to speech translation can be performed without explicit
knowledge of the text transcription in the target language. The
system presented in this paper could be used for different
applications such as generating audio books from texts in
different languages. Moreover, the proposed framework could
be applied to get augmented data in order to expand datasets
from low resource languages. The evaluation of this proposal
was carried out on the new CVSS dataset to confirm the great
performance achieved with this approach to generate speech.
In these experiments, we have also shown an improvement
in performance when the model used as initialisation for the
encoder-decoder architecture has been pre-trained by including
more languages of the translation pairs from the CVSS dataset.
This fact suggests that cross language learning might benefit
low resource languages to a significant amount in the text to
speech translation task.

The promising results achieved with the proposed system
have opened an interesting line of research, so future work
will focus on extending our direct text to speech framework
to join with a direct speech to speech framework. In this way,
a multimodal system could be built in which source input
could be speech or text since both modalities are compatible
to produce the same discrete acoustic units and thus generate
the target speech. Considering that only speech in the target
language is needed, further work could also explore the use
of languages different from English as target.



IEEE SIGNAL PROCESSING LETTERS 5

REFERENCES

[1] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal, K. Singh,
P. von Platen, Y. Saraf, J. Pino et al., “XLS-R: Self-supervised Cross-
lingual Speech Representation Learning at Scale,” in Proc. ISCA Inter-
speech, 2022, pp. 2278–2282.

[2] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis,
and L. Zettlemoyer, “Multilingual denoising pre-training for neural
machine translation,” Transactions of the Association for Computational
Linguistics, vol. 8, pp. 726–742, 2020.

[3] X. Li, C. Wang, Y. Tang, C. Tran, Y. Tang, J. M. Pino, A. Baevski,
A. Conneau, and M. Auli, “Multilingual Speech Translation from
Efficient Finetuning of Pretrained Models,” in Proc. Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2021.

[4] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant,
A. Barua, and C. Raffel, “mT5: A Massively Multilingual Pre-trained
Text-to-Text Transformer,” in Proc. Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2021, pp. 483–498.

[5] A. Bapna, C. Cherry, Y. Zhang, Y. Jia, M. Johnson, Y. Cheng,
S. Khanuja, J. Riesa, and A. Conneau, “mSLAM: Massively multilingual
joint pre-training for speech and text,” arXiv preprint arXiv:2202.01374,
2022.

[6] S. Khurana, A. Laurent, and J. Glass, “SAMU-XLSR: Semantically-
Aligned Multimodal Utterance-level Cross-Lingual Speech Representa-
tion,” IEEE Journal of Selected Topics in Signal Processing, pp. 1–13,
2022.

[7] Y. Jia, M. T. Ramanovich, T. Remez, and R. Pomerantz, “Translatotron
2: High-quality direct speech-to-speech translation with voice preserva-
tion,” in Proc. International Conference on Machine Learning, 2022,
pp. 10 120–10 134.

[8] Y. Jia, R. J. Weiss, F. Biadsy, W. Macherey, M. Johnson, Z. Chen,
and Y. Wu, “Direct Speech-to-Speech Translation with a Sequence-to-
Sequence Model,” in Proc. ISCA Interspeech, 2019, pp. 1123–1127.

[9] A. Lee, P.-J. Chen, C. Wang, J. Gu, S. Popuri, X. Ma, A. Polyak,
Y. Adi, Q. He, Y. Tang et al., “Direct Speech-to-Speech Translation
With Discrete Units,” in Proc. Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2022, pp. 3327–
3339.

[10] A. Lee, H. Gong, P.-A. Duquenne, H. Schwenk, P.-J. Chen, C. Wang,
S. Popuri, J. Pino, J. Gu, and W.-N. Hsu, “Textless speech-to-speech
translation on real data,” in Proc. Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2022, pp. 860–872.

[11] P.-A. Duquenne, H. Gong, and H. Schwenk, “Multimodal and multilin-
gual embeddings for large-scale speech mining,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp.
15 748–15 761.

[12] P.-A. Duquenne, H. Gong, B. Sagot, and H. Schwenk, “T-Modules:
Translation Modules for Zero-Shot Cross-Modal Machine Translation,”
in Proc. Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2022, pp. 5794–5806.

[13] Y. Jia, M. T. Ramanovich, Q. Wang, and H. Zen, “CVSS corpus and
massively multilingual speech-to-speech translation,” in Proc. Language
Resources and Evaluation Conference (LREC), 2022, pp. 6691–6703.

[14] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning
by masked prediction of hidden units,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 29, pp. 3451–3460, 2021.

[15] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W.-N. Hsu,
A. Mohamed, and E. Dupoux, “Speech Resynthesis from Discrete Dis-
entangled Self-Supervised Representations,” in Proc. ISCA Interspeech,
2021.

[16] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp.
17 022–17 033.

[17] C. Wang, M. Riviere, A. Lee, A. Wu, C. Talnikar, D. Haziza,
M. Williamson, J. Pino, and E. Dupoux, “VoxPopuli: A large-scale
multilingual speech corpus for representation learning, semi-supervised
learning and interpretation,” in Proc. Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2021, pp. 993–
1003.

[18] K. Lakhotia, E. Kharitonov, W.-N. Hsu, Y. Adi, A. Polyak, B. Bolte,
T.-A. Nguyen, J. Copet, A. Baevski, A. Mohamed, and E. Dupoux, “On

generative spoken language modeling from raw audio,” Transactions of
the Association for Computational Linguistics, vol. 9, 2021.

[19] A. Pasad, B. Shi, and K. Livescu, “Comparative layer-wise analysis of
self-supervised speech models,” arXiv preprint arXiv:2211.03929, 2022.

[20] W.-N. Hsu, Y.-H. H. Tsai, B. Bolte, R. Salakhutdinov, and A. Mohamed,
“HuBERT: How much can a bad teacher benefit ASR pre-training?” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021, pp. 6533–6537.

[21] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in Proc. Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2019,
pp. 48–53.

[22] Q. Xu, A. Baevski, T. Likhomanenko, P. Tomasello, A. Conneau,
R. Collobert, G. Synnaeve, and M. Auli, “Self-training and pre-training
are complementary for speech recognition,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021,
pp. 3030–3034.

[23] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 4779–4783.


	Introduction
	Proposed Method
	Preliminaries: Direct Speech to Speech Translation
	Direct Text to Speech Translation

	Experimental Setup
	Data
	Evaluation

	Results and Discussion
	Conclusions and Future Works
	References

