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Abstract
This paper describes our development work to design a lan-
guage recognition system that can discriminate closely related
languages and dialects of the same language. The work was a
joint effort by LIMSI and Vocapia Research in preparation for
the NIST 2015 Language Recognition Evaluation (LRE). The
language recognition system results from a fusion of four core
classifiers: a phonotactic component using DNN acoustic mod-
els, two purely acoustic components using a RNN model and
i-vector model, and a lexical component. Each component gen-
erates language posterior probabilities optimized to maximize
the LID NCE, making their combination simple and robust. The
motivation for using multiple components representing differ-
ent speech knowledge is that some dialect distinctions may not
be manifest at the acoustic level. We report experiments on the
NIST LRE15 data and provide an analysis of the results and
some post-evaluation contrasts. The 2015 LRE task focused on
the identification of 20 languages clustered in 6 groups (Ara-
bic, Chinese, English, French, Slavic and Iberic) of similar lan-
guages. Results are reported using the NIST Cavg metric which
served as the primary metric for the OpenLRE15 evaluation.
Results are also reported for the EER and the LER.

1. Introduction
Automatic spoken language recognition is the task of automat-
ically determining the language spoken in a given speech seg-
ment using the characteristics of the speech signal. This pa-
per describes recent developments and studies we carried out
in preparation for the National Institute of Standards and Tech-
nology (NIST) 2015 Language Recognition Evaluation (LRE).
LIMSI has been developing systems for language recognition
since the early 1990s, when the use of phone-based acoustic
likelihoods was proposed for language identification as well as
a general framework to identify non-linguistic information in
the speech signal [1, 2]. The basic approach was extended to
use parallel phone recognizers with phonotactic characteristics
[3], lexical information [4, 5] and phone lattices [6, 7]. One of
the main innovations for such types of systems was proposed by
Zissman (1996), who demonstrated that phone recognizers were
not required for each targeted language in order to characterize
their phonotactic constraints.

The phonotactic approach relies on the assumption that
the way sequences of phones are arranged is language spe-
cific [8] meaning that even if two languages share the same
phonemes, their phonotactic characteristics are different. Vari-
ous approaches based on phone decoding with phonotactic con-
straints have been explored for many years and have been shown
to provide state-of-the-art results [9, 10, 11]. This papers also
investigates other methods which have been used for language
recognition (I-vectors and RNNs) and their combination with
phonotactic and lexical approaches.

These methods were explored in the context of the NIST
2015 Language Recognition Evaluation (OpenLRE15) which
aimed to distinguish closely related languages and dialects of
the same language [12]. As such, the OpenLRE15 task is more
challenging than previous LRE evaluations which focused on
discriminating among languages. In accordance with the eval-
uation plan, the core testing condition was based on the use of
only limited and specified training data to develop the models
for each of the target languages. Data augmentation [13] was
applied in order to mitigate the effect of the limited training
data for some languages.

This development work presented was a joint effort be-
tween LIMSI and Vocapia Research. We use a similar archi-
tecture to the one described in [10, 11], but with HMM-DNN
instead of HMM-GMM. This phonotactic system was com-
bined with up to three other language recognition components:
two purely acoustic components, an RNN model and I-vector
model, and a lexical component. System combination is just a
simple averaging of the component LID posteriors which were
all optimized to maximize the LID normalized cross entropy
(NCE). 1

After a description of the training and evaluation data, the
component language recognizers are described, followed by ex-
tensive results and their analysis.

2. Corpora
This section describes the training data distributed for the
OpenLRE15 evaluation, the selection of a set of development
data from the distributed data (without prior knowledge of the
characteristics of the evaluation data), and the distribution of the
evaluation data set.

2.1. Training data

Table 1 gives a descriptions of the available training data, pro-
viding for each cluster the associated target languages, the num-
ber of speech files for each language and the speech duration in
hours.

Since only very limited resources were provided for some
of the language variants (e.g. British English), we decided to
augment the training data set as proposed in [13]. Modified
copies of the audio files at different speeds were created by re-
sampling the data using the speed function of Sox. For each
audio file in the training data two additional copies were cre-
ated by modifying the speed to 90% and 110% of the original
speaking rate. In order to meet the evaluation conditions, all
LID models were trained on the restricted data after data aug-
mentation.

1Since our phone decoders had been pre-trained, they did not adhere
to a strict application of the evaluation rules. However, all phonotactic
models used only the provided training data.



code cluster - target language # files # hours
ara-arz Arabic - Egyptian 220 95.4
ara-acm Arabic - Iraqi 210 37.2
ara-apc Arabic - Levantine 225 41.1
ara-ary Arabic - Maghrebi 207 38.6
ara-arb Arabic - Modern Standard 406 3.7
zho-yue Chinese - Cantonese 17 3.4
zho-cmn Chinese - Mandarin 219 71.8
zho-cdo Chinese - Min Dong 37 8.1
zho-wuu Chinese - Wu 36 7.7
eng-gbr English - British 47 0.5
eng-usg English - American 214 100.0
eng-sas English - Indian 392 8.1
fre-waf French - West African 34 7.7
fre-hat French - Haitian 323 2.7
qsl-pol Slavic - Polish 363 30.0
qsl-rus Slavic - Russian 386 18.0
spa-car Iberian - Caribbean Spanish 60 26.9
spa-eur Iberian - European Spanish 38 8.1
spa-lac Iberian - Latin American Spanish 30 6.9
por-brz Iberian - Brazilian Portuguese 47 0.8

Table 1: Training data repartition by language cluster and target
language.

2.2. Development data set

As no common development data set was specified in the evalu-
ation plan, we selected a development data set from the training
data. To do so, 10% of the training files were randomly selected
prior to data augmentation. From these files two development
sets were defined: one with 1180 long cuts containing segments
ranging from 10s to 50s of speech and another with 7500 short
cuts containing speech segments of 3s to 10s. Even after data
augmentation, some of languages, in particular, British English
and Brazilian Portuguese remained poorly represented in the
development data set.

2.3. Test data

Table 2 provides information about the test data used in the of-
ficial NIST evaluation. The test segments cover a wide range
of speech durations from 1s to 82s with more than a third of
the files containing less than 5s of speech (cf. Figure 1). The
test segment durations are more varied than our internal devel-
opment set and have a larger number of short segments.

3. LID System Components
The language recognition system resulting from this work fuses
the results produced by four component systems, relying on
acoustic-based and token-based classifiers. The token based
components aim to capture the phonotactic and lexical prop-
erties of the language. This section provides brief descriptions
of the four component LID systems and the score fusion.

3.1. Phonotactic component (PHO)

Phonotactic systems for language identification have been pop-
ular since the mid-1990s [1, 2, 3]. Such systems rely on the
assumption that the phonotactic characteristics, that is the way
phonemes make up words and sentences, differ across lan-
guages. Reliable estimation of phonotactic constraints requires
highly consistent phone recognizers across varied acoustic en-
vironments in order to differentiate between languages [10, 11].

code cluster - target language # files # hours
ara-arz Arabic - Egyptian 8023 41.8
ara-acm Arabic - Iraqi 8994 47.7
ara-apc Arabic - Levantine 6802 38.4
ara-ary Arabic - Maghrebi 8264 46.3
ara-arb Arabic - Modern Standard 2447 8.2
zho-yue Chinese - Cantonese 22532 151.9
zho-cmn Chinese - Mandarin 6026 30.4
zho-cdo Chinese - Min Dong 8542 47.1
zho-wuu Chinese - Wu 7496 41.2
eng-gbr English - British 7998 27.1
eng-usg English - American 6980 33.8
eng-sas English - Indian 6932 35.4
fre-waf French - West African 6935 38.3
fre-hat French - Haitian 28741 168.6
qsl-pol Slavic - Polish 4818 17.0
qsl-rus Slavic - Russian 3051 11.4
spa-car Iberian - Caribbean Spanish 2332 12.2
spa-eur Iberian - European Spanish 5803 25.3
spa-lac Iberian - Latin American Spanish 6973 30.3
por-brz Iberian - Brazilian Portuguese 4645 15.3

Table 2: Repartition of language clusters and target languages
and in the official LRE15 evaluation data set.

Phonotactic constraints are inferred from the speech signal us-
ing one or several phone recognizers to decode speech sig-
nals into phone sequences or phone lattices from which n-gram
phonotactic statistics (representing phonotactic constraints) are
estimated. Compared to the best phone hypothesis, phone
lattices contain more information captured by the alternative
phone sequences. Phone decoding is carried out without any
grammar.

The phonotactic component of this language recognition
system makes use of the Parallel Phone Recognizer followed
by Language Modeling (PPRLM) approach [3]. Pre-trained
phone decoders using HMM-DNN acoustic models for three
languages (English, Italian and Russian) were used to decode
all of the training data. Phone n-gram statistics were estimated
from the resulting phone lattices. The n-gram statistics are then
used to compute the expectation of the phone log-likelihood for
each target language [6]. The posteriors of the three phone de-
coders are averaged, and used as the score for the phonotactic
LID component.

3.2. I-vector component (IVC)

The i-vector framework [14] has been successfully applied to
Speaker Verification [15, 16] and Language Identification [17].

The i-vector system characterizes languages and utterances
with vectors obtained by projecting their speech data onto a to-
tal variability space T where language and channel information
is dense. It is generally expressed as:

S = m+ Tw (1)

where w is called an i-vector and m and S are the GMM
super-vector of the language independent UBM and language
adapted model, respectively.

During the test phase, the i-vector of the test utterance is
scored against the claimant (hypothesized language) specific
vector obtained in the training phase, after post-processing the
vectors for session variability compensation. The PLDA (Prob-
abilistic Linear Discriminant Analysis) technique [18], which is
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Figure 1: Distribution of the evaluation data: number of test
segments as a function of speech duration.

also commonly used for speaker verification [15, 16] or gender
identification [19]), was used. PLDA is a generative modeling
technique which decomposes the i-vector w into several com-
ponents as:

w = µw + Φys + Γz + ε (2)

where µ is the mean of i-vectors obtained by averaging over the
training set and Φ and Γ are rectangular matrices representing
the eigen voice and eigen channel subspace respectively. ys and
z are respectively called the language and channel factor, and
have a prior normal distribution. ε denotes the residual noise.
In the test phase, the score between the i-vector of the claimant
wcl and test utterance wtst is calculated as:

score(wcl, wtst) = log
p(wcl, wtst|θtar)

p(wcl, wtst|θnon)
(3)

with hypothesis θtar that wcl and wtst are from the same (tar-
get) language and hypothesis θnon that they are from different
languages. For details see [18].

The i-vector LID component uses 7 MFCC features in-
cluding C0. Similar to [17], vocal tract length normaliza-
tion (VTLN) and cepstral mean and variance normalization
(CMVN) are applied to both the training and test data. Then the
Shifted Delta Coefficients (SDC) [20] are computed and con-
catenated to the MFCC vector. The final feature vectors have
56 dimensions. The system is implemented using the Kaldi
toolkit [21].

A full covariance GMM with 2048 components and an i-
vector extractor are estimated on the training data. The i-vector
dimensionality is 600. This i-vector length is normalized to
unity [16]. The PLDA model is estimated on all training ut-
terances with 10 EM iterations. Training the PLDA model on
a subset of the training data (max 200 utterances per language),
as proposed in [17], gave less good results than training it on
the full data set.

3.3. Lexical component (LEX)

For the lexical system, the basic model is similar to the PPRLM
approach, but in this case the decoding is done at the lexical
level [4, 5]. Seven word-based speech recognizers, 5 monolin-
gual and 2 multi-lingual systems, were used in the lexical com-

ponent. The five monolingual systems are conversational tele-
phone speech recognition systems for the French, Spanish, Ital-
ian, Arabic and English languages. The multi-lingual systems
were trained using data from 5 languages (Arabic, Chinese, En-
glish, Spanish and French). The lexicon of the multi-lingual
system is comprised of all words in all languages and contains
311k words and is represented with a set of 221 phones.
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Figure 2: Schema for training the lexical LID component.

Figure 2 shows how the lexical system is trained. Each
speech recognition system is used to decode the training data
pool. The output of the decoding of the data corresponding to
each target language is used to build a language model for that
language. A multi-lingual language model is also built using the
decoding output for the entire training corpus. The final model
for each target language results from an interpolation of these
two LMs.

To identify the language of an audio segment, the data is
decoded with the seven systems. Then for each language, the
likelihood of each hypothesis for each LM is computed, fol-
lowed by the estimation of the posterior probabilities. Finally,
the geometric mean is performed to obtain a single output vec-
tor.

3.4. RNN component (RNN)

The modified version of the BLSTM neural network introduced
in [22] was used in this work. The input to the system are 8
PLP coefficients and their first and second derivatives, com-
puted every 10 ms after VTLN is applied. Then, cepstral mean
and variance normalization is performed, producing 24 dimen-
sional features. One recurrent neural network (RNN) based on
BLSTM with a softmax layer for the output was used to pro-
duce a sequence of vectors with 20 dimensions (one for each
variant). Finally, to obtain a single output vector, the geometric
mean of all the vectors in the output sequence was computed.

3.4.1. Augmented BLSTM

To make use of the context around each audio frame, an RNN
based on Long Short-Term Memory cells as shown in Fig-
ure 3 was used. The LSTM cells were introduced to overcome
some of the shortcomings of classical RNNs [23] and were
popularized after Graves demonstrated their good performance
on optical character recognition and speech sequence labeling
tasks [24, 25].

Given an input sequence p = (p1, ...,pT ), a standard RNN
computes the output vector sequence z = (z1, ..., zT ) by iter-
ating the following equations from t = 1→ T :

ht = σ1

(
W 1 · p̃t + b1

)
with p̃t =

[
pt

ht−1

]
(4)

zt = σz

(
W z · ht + bz

)
(5)
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Figure 3: LSTM cell. The dashed lines correspond to the added
links between the gates for the augmented LSTM cell.

The use of LSTM cells instead of the classic summation
units modifies the computation of ht as follows:

it = σi

(
W i · p̃t + W c

i · ct−1 + bi
)

(6)

f t = σf

(
W f · p̃t + W c

f · ct−1 + bf
)

(7)

ct = diag
(
f t) · ct−1 + diag

(
it
)
· σc

(
W c · p̃t + bc

)
(8)

ot = σo

(
W o · p̃t + W c

o · ct + bo
)

(9)

ht = diag
(
ot) · σh

(
ct
)

(10)

where it, f t, ct and ot are respectively the input gate, the forget
gate, the cell and the output gate activation vectors. They are
all the same size as the hidden vector ht. W c

i , W c
f , and W c

o

are diagonal matrices so that each heart of a cell is only visible
to the gates of the same cell.

One shortcoming of conventional RNNs is that they are
only able to make use of the left context. For LID purposes
there is no reason not to exploit right context as well. Bidirec-
tional LSTM neural networks (BLSTM) were developed to do
just that: 2 distinct LSTM networks process the sequence both
forward and backward, and then the outputs of both networks
are combined and fed into the output layer. This way, we can
fully exploit the long range capabilities of LSTM cells. In the
literature (e.g. [24, 25]) BLSTM networks always outperform
unidirectional ones, so only BLSTM networks were explored in
this study.

In [22], a modified version of the BLSTM neural network
was proposed in which direct links are added between the three
gates of a LSTM cell as shown by the dashed lines in Figure 3.
This modification aims to prevent that some of the LSTM cells
get stuck in a saturated state when trained on long sequences.

Equations (6), (7) and (9) are thus modified into (12), (14)
and (16):

ĩ
t

= W i
i · it−1 + W f

i · f
t−1 + W o

i · ot−1 (11)

it = σi

(
W i · p̃t + W c

i · ct−1 + ĩ
t

+ bi
)

(12)

f̃
t

= W i
f · it−1 + W f

f · f
t−1 + W o

f · ot−1 (13)

f t = σf

(
W f · p̃t + W c

f · ct−1 + f̃
t

+ bf
)

(14)

õt = W i
o · it + W f

o · f t + W o
o · ot−1 (15)

ot = σo

(
W o · p̃t + W c

o · ct + õt + bo
)

(16)

where the nine matrices W
{i,f,o}
{i,f,o} are diagonal so that a gate

can only have access to the gates of the same cell.
With these new links the three gates of a cell can interact

more efficiently and improve the cell behavior. We call this
network BLSTM+.

3.4.2. BLSTM training

Training of the BLSTM+ neural network was performed us-
ing back-propagation through time as described in [26] and its
LSTM version [24]. The algorithm used was SMORMS3 as
described in [27].

Training is a four-step process. First, 20 small binary classi-
fiers (2 BLSTM+ layers composed of 8 cells and a feed-forward
layer of 2 hidden units) are trained to separate each of the 20
languages from the other 19 languages. In the second step,
the 20 small RNNs are combined into a multi-class classifier:
the weight matrices of the forward and recurrent links of the
small RNNs are combined into block diagonal matrices for the
weights of the multi-class RNN. The final RNN is composed of
2 BLSTM+ layers each with 160 cells, a feed-forward layer of
40 hidden units, and a softmax layer of 20 dimensions.

The feed-forward layer of 20x2 hidden units and the soft-
max layer are then trained in order to balance the behavior of
the 20 small RNNs inside the multi-class RNN. Finally, the full
network multi-class RNN is trained using the weights obtained
before as a ”very smart” initialization point.

During early experiments, this four-step training process
was found to be both much faster and to lead to much better
performance than a straightforward training of the multi-class
RNN.

3.5. Fusion

We also tried to use a feed-forward neural network to carry out
the fusion. The neural network was trained on part of the train-
ing set and on the development set. The fusion worked quite
well, but due to the low quantity of data available for some of
the languages, we were unable to set aside more of the training
data to validate the NN-fusion. Since we could not test this ap-
proach thoroughly, we decided not to use it lest it should prove
insufficiently robust.

Fusion of the outputs of the component LID systems is ob-
tained by computing the geometric mean of their respective pos-
teriors, the posteriors of each component having been optimized
by maximizing the LID NCE.

4. Results
This section presents the results for the different systems eval-
uated in NIST OpenLRE15. Three evaluation metrics are used:
the NIST Cavg metric which served as the primary metric for
the OpenLRE15 evaluation [12], as well as the EER and the
average language error rate defined as:

LERavg =
1

nC
Σc∈C

(
1

nDc

Σd∈DcPerr(d)

)
(17)

where C is the set of clusters, nC is the number of clusters,
Dc is the set of variants for cluster c and nDc is the number of
variants in cluster c.

Detailed results are provided for two internal development
sets (long and short cuts), and the evaluation data as the sys-
tem accuracy and the ranking of the component LID systems



varies greatly across the data sets and metrics. Results of post-
evaluation experiments aiming to reduce the mismatch between
training and testing conditions are also reported.

4.1. Results on development data

Table 3 reports results obtained on the 1180 long-cut segments
containing 10s to 50s of speech with an average speech dura-
tion of 27.6s. It can be seen that both acoustic systems and
the phonotactic one have somewhat comparable performances,
with an average LER below 8% and an EER of about 3%. Com-
bining the RNN-based component with the phonotactic one re-
duces the average LER by 50% over the best single component.
The performance can also be improved by including the i-vector
component to the combination. Unfortunately, we were not able
to further reduce the LER by combining with the lexical system
on this development set.

System LER EER CAVG
PHO 7.5 2.9 0.044
RNN 5.9 3.4 0.031
IVC 5.7 2.5 0.029
LEX 12.5 4.7 0.078
PHO+RNN 2.3 1.6 0.012
PHO+RNN+IVC 2.4 1.5 0.014
PHO+RNN+IVC+LEX 3.5 1.5 0.021

Table 3: Results on the long cut development data (1180 seg-
ments) with the four LID components and some combinations.

Table 4 shows the results obtained on the short-cut develop-
ment data containing 7500 segments ranging in duration from
3s to 10s of speech, with an average speech duration is 4.5s.
Surprisingly on these shorter segments, the acoustic systems are
better than the phonotactic and the lexical systems. However, as
was observed for the longer segments, the combination of the
best of both types is very effective, leading to a 26% relative
gain over the performance of the best system alone. Moreover,
adding the i-vector and the lexical components to the combina-
tion yields further improvements with respect to the two-way
combination. It can be seen that the best results depend on
the metric, where including the lexical component improves the
EER, but not the LER or Cavg over the 3-way combination.

System LER EER CAVG
PHO 25.4 13.1 0.151
RNN 19.0 11.8 0.118
IVC 19.5 11.2 0.120
LEX 35.4 17.9 0.237
PHO+RNN 14.0 8.1 0.080
PHO+RNN+IVC 12.4 6.7 0.073
PHO+RNN+IVC+LEX 13.7 6.5 0.075

Table 4: Results on the short cut development data (7500 seg-
ments) with the four LID components and some combinations.

Figure 4 illustrates the impact of the quantity of speech on
the performance of each system according to the average LER
metric. The segments in the two development sets are combined
and grouped into intervals according to their speech duration. It
can be seen that the performance of the acoustic systems (RNN
and IVC) degrades less with decreasing speech duration than
the token-based approaches (PHO and LEX). For speech dura-
tions longer than 10s, the performances of the four components

are quite similar. Figure 4 also shows that the large performance
gain brought by combining systems holds for all speech dura-
tions.
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Figure 4: Average language error rate on the combined devel-
opment data (1180 long and 7500 short cuts) grouped into in-
tervals according to their speech duration.

The OpenLRE15 data are grouped into language clusters
(cf. Table 1), which contain closely related languages or vari-
ants of the same language. Table 5 gives the Cavg of the best
system combination (PHO+RNN+IVC) for each language clus-
ter. The Cavg for the English, French and Slavic clusters is sig-
nificantly lower than for the three other clusters. The confusions
for the more difficult Arabic, Chinese and Iberian clusters (ara,
zho, spa) can be seen in Figure 5 which plots the within cluster
confusions for all languages. It can also be seen that within the
Iberian cluster Brazilian Portuguese is easily separated from the
three Spanish variants.

ara zho eng fre qsl spa
Cavg 0.12 0.14 0.03 0.001 0.06 0.12

Table 5: Cavg for each language cluster on the combined devel-
opment data (8680 segments).
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guage cluster.



4.2. Evaluation results

Table 6 presents the results with the LER, EER and Cavg met-
rics on the official NIST evaluation data set. It can be seen that
performance of the individual components and the combined
systems is significantly less good than the results obtained on
the development data. After analysis, we were able to identify
two factors that play an important role in this degradation:

• for several variants there is a strong mismatch between
the training data and the evaluation data,

• very short segments (speech duration < 5s) are prepon-
derant in the evaluation data set (≈ 40%).

The phonotactic component is clearly the most robust to
this mismatch, as it outperforms the other LID components. The
difference in average LER is about 10% absolute less than the
other 3 components. Combining the PHO system with the RNN
or both the RNN+IVC results in a very minor decrease in LER.
However, in contrast with the results on the development data,
the combination of the 4 LID components is seen to improve
the average LER over the phonotactic component alone.

System LER EER CAVG
PHO 27.8 16.9 0.209
RNN 38.4 27.1 0.282
IVC 36.2 22.7 0.268
LEX 36.9 24.6 0.283
PHO+RNN 27.6 19.2 0.207
PHO+RNN+IVC 27.6 19.1 0.207
PHO+RNN+IVC+LEX 27.0 18.8 0.207

Table 6: Results on the official evaluation data with the four
LID components and some combinations.

Figure 6 shows the performance of the LID components and
some combinations in terms of average LER as a function of the
speech duration quantiles. Speech duration appears to have less
of an impact on the LER than was the case for the development
data, and for the best system (PHO) the LER is about 20% even
for the long segments.
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Figure 6: Average language error rate on the evaluation set
grouped into intervals according to speech duration.

Table 7 reports the Cavg of the best system combination
(PHO+RNN+IVC+LEX) computed for each cluster in the eval-
uation set and Figure 7 shows the confusions occurring in each

cluster. The Cavg and confusions increase significantly from the
development results for all clusters, except Chinese and Slavic.
For the other language clusters, there is a mismatch between the
training and testing data. This is especially true for the French
cluster for which nearly all the fre-hat files were misclassified.
For the English cluster, the increase in Cavg can be mainly ex-
plained by the very small amount of training data available for
the British variant, resulting in a poorer model for this variant
than for the other two. In the confusion matrix it can be seen
that the correct classification for eng-gbr is only about half that
of the other English variants.

ara zho eng fre qsl spa
Cavg 0.23 0.14 0.12 0.51 0.03 0.21

Table 7: Cavg for each cluster on the evaluation set
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Figure 7: Confusion matrix for the evaluation data by language
cluster.

4.3. Post-Evaluation Results

Since there was a large mismatch between the official evalua-
tion and training data sets, we performed an experiment where
10% of files of the evaluation data set were randomly selected
and added to the training data. The four LID components were
retrained and system performance was assessed on the remain-
ing 90% of the evaluation data set. The results of this post-
evaluation experiment, given in Table 8 demonstrate that by re-
ducing the mismatch the evaluation data have the same general
comportment observed on the development data. The differ-
ent components perform quite soundly and the combining the
acoustic LID components with the phonotactic one yields a 33%
relative reduction in the average LER.

Figure 8 shows the impact of speech duration on the per-
formance of the 4 LID components and some combinations in
terms of average LER of the post-evaluation data subset. These
results are similar to those observed on the development data
(cf. Fig 4).

Table 9 gives the Cavg of the best system combination
(PHO+RNN+IVC) computed for each cluster and Figure 9
shows the confusions for the different language clusters. Com-
pared to the results on the official evaluation data, the confu-
sions are greatly reduced for almost all the clusters. The relative
improvement in Cavg is 58% for the Chinese cluster and 75%



System LER EER CAVG
PHO 23.5 10.1 0.151
RNN 22.8 8.4 0.146
IVC 26.6 10.4 0.174
LEX 33.9 17.6 0.247
PHO+RNN 16.2 5.7 0.100
PHO+RNN+IVC 15.5 5.4 0.095
PHO+RNN+IVC+LEX 15.6 5.6 0.098

Table 8: Post-evaluation results on 90% of the evaluation data
with the four LID components and some combinations.

speech duration in seconds
[0;5] ]5;10] ]10;20] ]20;30] > 30 all

av
er

ag
e 

LE
R

0

5

10

15

20

25

30

35

40

45

50
PHO
RNN
IVC
LEX
RNN+PHO
RNN+PHO+IVC
RNN+PHO+IVC+LEX

Figure 8: Average language error rate for the post-evaluation
data subset grouped into intervals according to speech duration.

for the French cluster. The Arabic cluster, on the other hand,
is the most difficult with a Cavg of 0.2 and a lot of confusions
between the Egyptian and the Levantine variants.

ara zho eng fre qsl spa
Cavg 0.19 0.06 0.05 0.13 0.02 0.12

Table 9: Cavg for each language cluster on the post-evaluation
data subset.

5. Conclusions
This paper has described the work carried out to develop a lan-
guage recognition system for the 2015 NIST Language Recog-
nition Evaluation. The language recognition system results
from a fusion of four component classifiers, two acoustic-based
and two token-based. One of the acoustic components uses
an RNN model and the other an i-vector model. The token-
based LID components aim to capture the phonotactic and lex-
ical properties of the language. The motivation for using multi-
ple components representing different speech knowledge is that
some dialect distinctions may not be manifest at the acoustic
level. Results were reported on an internally defined devel-
opment set and on the official OpenLRE15 evaluation data for
each LID component and some combinations. Each LID com-
ponent generates language posterior probabilities optimized to
maximize the LID NCE, and the combination is obtained by a
simple geometric average of the posteriors.

The results on the evaluation data did not confirm those
on the development set. This can be attributed to a large mis-
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Figure 9: Confusion matrix for the post-evaluation data subset
by language cluster.

match between the training and evaluation data, in particular
for some language variants. The phonotactic system was more
robust to this strong mismatch than the other LID systems and
system combination did not significantly improve the evalua-
tion results. Some post-evaluation experiments were carried out
to reduce the training/evaluation data mismatch by including a
small portion of the evaluation data in the LID training and test-
ing on the remaining data. Doing so significantly improved the
results, with the system combination being very effective as it
had been on the development data.
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